1,913 research outputs found

    Kinetics of Heterogeneous Single-Species Annihilation

    Full text link
    We investigate the kinetics of diffusion-controlled heterogeneous single-species annihilation, where the diffusivity of each particle may be different. The concentration of the species with the smallest diffusion coefficient has the same time dependence as in homogeneous single-species annihilation, A+A-->0. However, the concentrations of more mobile species decay as power laws in time, but with non-universal exponents that depend on the ratios of the corresponding diffusivities to that of the least mobile species. We determine these exponents both in a mean-field approximation, which should be valid for spatial dimension d>2, and in a phenomenological Smoluchowski theory which is applicable in d<2. Our theoretical predictions compare well with both Monte Carlo simulations and with time series expansions.Comment: TeX, 18 page

    Velocity Distributions of Granular Gases with Drag and with Long-Range Interactions

    Full text link
    We study velocity statistics of electrostatically driven granular gases. For two different experiments: (i) non-magnetic particles in a viscous fluid and (ii) magnetic particles in air, the velocity distribution is non-Maxwellian, and its high-energy tail is exponential, P(v) ~ exp(-|v|). This behavior is consistent with kinetic theory of driven dissipative particles. For particles immersed in a fluid, viscous damping is responsible for the exponential tail, while for magnetic particles, long-range interactions cause the exponential tail. We conclude that velocity statistics of dissipative gases are sensitive to the fluid environment and to the form of the particle interaction.Comment: 4 pages, 3 figure

    Percolation with Multiple Giant Clusters

    Full text link
    We study the evolution of percolation with freezing. Specifically, we consider cluster formation via two competing processes: irreversible aggregation and freezing. We find that when the freezing rate exceeds a certain threshold, the percolation transition is suppressed. Below this threshold, the system undergoes a series of percolation transitions with multiple giant clusters ("gels") formed. Giant clusters are not self-averaging as their total number and their sizes fluctuate from realization to realization. The size distribution F_k, of frozen clusters of size k, has a universal tail, F_k ~ k^{-3}. We propose freezing as a practical mechanism for controlling the gel size.Comment: 4 pages, 3 figure

    Correlation and response in a driven dissipative model

    Full text link
    We consider a simple dissipative system with spatial structure in contact with a heat bath. The system always exhibits correlations except in the cases of zero and maximal dissipation. We explicitly calculate the correlation function and the nonlocal response function of the system and show that they have the same spatial dependence. Finally, we examine heat transfer in the model, which agrees qualitatively with simulations of vibrated granular gases

    Alignment of Rods and Partition of Integers

    Full text link
    We study dynamical ordering of rods. In this process, rod alignment via pairwise interactions competes with diffusive wiggling. Under strong diffusion, the system is disordered, but at weak diffusion, the system is ordered. We present an exact steady-state solution for the nonlinear and nonlocal kinetic theory of this process. We find the Fourier transform as a function of the order parameter, and show that Fourier modes decay exponentially with the wave number. We also obtain the order parameter in terms of the diffusion constant. This solution is obtained using iterated partitions of the integer numbers.Comment: 6 pages, 4 figure

    Universal statistical properties of poker tournaments

    Get PDF
    We present a simple model of Texas hold'em poker tournaments which retains the two main aspects of the game: i. the minimal bet grows exponentially with time; ii. players have a finite probability to bet all their money. The distribution of the fortunes of players not yet eliminated is found to be independent of time during most of the tournament, and reproduces accurately data obtained from Internet tournaments and world championship events. This model also makes the connection between poker and the persistence problem widely studied in physics, as well as some recent physical models of biological evolution, and extreme value statistics.Comment: Final longer version including data from Internet and WPT tournament

    Popularity-Driven Networking

    Full text link
    We investigate the growth of connectivity in a network. In our model, starting with a set of disjoint nodes, links are added sequentially. Each link connects two nodes, and the connection rate governing this random process is proportional to the degrees of the two nodes. Interestingly, this network exhibits two abrupt transitions, both occurring at finite times. The first is a percolation transition in which a giant component, containing a finite fraction of all nodes, is born. The second is a condensation transition in which the entire system condenses into a single, fully connected, component. We derive the size distribution of connected components as well as the degree distribution, which is purely exponential throughout the evolution. Furthermore, we present a criterion for the emergence of sudden condensation for general homogeneous connection rates.Comment: 5 pages, 2 figure

    Opinion dynamics: rise and fall of political parties

    Full text link
    We analyze the evolution of political organizations using a model in which agents change their opinions via two competing mechanisms. Two agents may interact and reach consensus, and additionally, individual agents may spontaneously change their opinions by a random, diffusive process. We find three distinct possibilities. For strong diffusion, the distribution of opinions is uniform and no political organizations (parties) are formed. For weak diffusion, parties do form and furthermore, the political landscape continually evolves as small parties merge into larger ones. Without diffusion, a pattern develops: parties have the same size and they possess equal niches. These phenomena are analyzed using pattern formation and scaling techniques.Comment: 5 pages, 5 figure
    • …
    corecore