24 research outputs found

    Breaking Functional Connectivity into Components: A Novel Approach Using an Individual-Based Model, and First Outcomes

    Get PDF
    Landscape connectivity is a key factor determining the viability of populations in fragmented landscapes. Predicting ‘functional connectivity’, namely whether a patch or a landscape functions as connected from the perspective of a focal species, poses various challenges. First, empirical data on the movement behaviour of species is often scarce. Second, animal-landscape interactions are bound to yield complex patterns. Lastly, functional connectivity involves various components that are rarely assessed separately. We introduce the spatially explicit, individual-based model FunCon as means to distinguish between components of functional connectivity and to assess how each of them affects the sensitivity of species and communities to landscape structures. We then present the results of exploratory simulations over six landscapes of different fragmentation levels and across a range of hypothetical bird species that differ in their response to habitat edges. i) Our results demonstrate that estimations of functional connectivity depend not only on the response of species to edges (avoidance versus penetration into the matrix), the movement mode investigated (home range movements versus dispersal), and the way in which the matrix is being crossed (random walk versus gap crossing), but also on the choice of connectivity measure (in this case, the model output examined). ii) We further show a strong effect of the mortality scenario applied, indicating that movement decisions that do not fully match the mortality risks are likely to reduce connectivity and enhance sensitivity to fragmentation. iii) Despite these complexities, some consistent patterns emerged. For instance, the ranking order of landscapes in terms of functional connectivity was mostly consistent across the entire range of hypothetical species, indicating that simple landscape indices can potentially serve as valuable surrogates for functional connectivity. Yet such simplifications must be carefully evaluated in terms of the components of functional connectivity they actually predict

    The Bioarchaeological Investigation of Childhood and Social Age: Problems and Prospects

    Full text link

    Corridor or drift fence? The role of medial moraines for fly dispersal over glacier

    No full text
    Corridors are often considered to promote dispersal between habitat patches. In this paper, we study whether or not corridors induce colonisation of nunataks (ice-free areas in glacier surroundings) by promoting dispersal from lowland to the nunataks. On outlet glaciers, debris originating from nunataks forms the so-called medial moraines that stretch from the nunataks down-glacier to the lowland, forming corridors of debris on the glacier. Aerial dispersal was determined with yellow sticky traps on the moraines, bare glacier and glacier foreland. Dipterans were sampled in pitfall traps on the nunataks. Flying insects that were present on the vegetated glacier foreland belonged to five orders, that is, Diptera, Hemiptera, Hymenoptera, Lepidoptera and Trichoptera. On the glacier and medial moraines, however, mainly dipterans were present, with the majority of individuals found on the moraines. Hoverflies (Syrphidae) were abundant on the moraines and on the edges of nunataks close to the moraines, but were not present on the vegetated foreland. The origin of the hoverflies is thus not the nunataks and not the lowland. Rather, they are brought in by air currents towards the glacier, where they aggregate on a land type where they have a chance of survival, although it is not habitable. Thus, we conclude that the medial moraines do not function as regular corridors but as drift fences that direct the dispersal towards the adjacent land types, that is, the nunataks and the glacier foreland
    corecore