4,910 research outputs found
Low frequency elastic wave propagation in 2D locally resonant phononic crystal with asymmetric resonator
The resonance modes and the related effects to the transmission of elastic
waves in a two dimensional phononic crystal formed by periodic arrangements of
a two blocks unit cell in one direction are studied. The unit cell consists of
two asymmetric elliptic cylinders coated with silicon rubber and embedded in a
rigid matrix. The modes are obtained by the semi-analytic method in the least
square collocation scheme and confirmed by the finite element method
simulations. Two resonance modes, corresponding to the vibration of the
cylinder along the long and short axes, give rise to resonance reflections of
elastic waves. One mode in between the two modes, related to the opposite
vibration of the two cylinders in the unit cell in the direction along the
layer, results in the total transmission of elastic waves due to zero effective
mass density at the frequency. The resonance frequency of this new mode changes
continuously with the orientation angle of the elliptic resonator.Comment: 17 pages, 7 figure
A Theoretical Model for the Relation for Supermassive Black Holes in Galaxies
We construct a model for the formation of black holes within galactic bulges.
The initial state is a slowly rotating isothermal sphere, characterized by
effective transport speed \aeff and rotation rate . The black hole
mass is determined when the centrifugal radius of the collapse flow exceeds the
capture radius of the central black hole. This model reproduces the observed
correlation between black hole masses and galactic velocity dispersions, \mbh
\approx 10^8 M_\odot (\sigma/200 \kms)^4, where \sigma = \sqrt{2} \aeff.
This model also predicts the ratio \mrat of black hole mass to host mass:
\mrat 0.004 (\sigma/200 \kms).Comment: 9 pages, 2 figures, submitted to Astrophysical Journal Letter
Energy loss mechanism for suspended micro- and nanoresonators due to the Casimir force
A so far not considered energy loss mechanism in suspended micro- and
nanoresonators due to noncontact acoustical energy loss is investigated
theoretically. The mechanism consists on the conversion of the mechanical
energy from the vibratory motion of the resonator into acoustic waves on large
nearby structures, such as the substrate, due to the coupling between the
resonator and those structures resulting from the Casimir force acting over the
separation gaps. Analytical expressions for the resulting quality factor Q for
cantilever and bridge micro- and nanoresonators in close proximity to an
underlying substrate are derived and the relevance of the mechanism is
investigated, demonstrating its importance when nanometric gaps are involved
GeoLab Concept: The Importance of Sample Selection During Long Duration Human Exploration Mission
In the future when humans explore planetary surfaces on the Moon, Mars, and asteroids or beyond, the return of geologic samples to Earth will be a high priority for human spaceflight operations. All future sample return missions will have strict down-mass and volume requirements; methods for in-situ sample assessment and prioritization will be critical for selecting the best samples for return-to-Earth
Angular Radii of Stars via Microlensing
We outline a method by which the angular radii of giant and main sequence
stars in the Galactic bulge can be measured to a few percent accuracy. The
method combines ground-based photometry of caustic-crossing bulge microlensing
events, with a handful of precise astrometric measurements of the lensed star
during the event, to measure the angular radius of the source, theta_*. Dense
photometric coverage of one caustic crossing yields the crossing timescale dt.
Less frequent coverage of the entire event yields the Einstein timescale t_E
and the angle phi of source trajectory with respect to the caustic. The
photometric light curve solution predicts the motion of the source centroid up
to an orientation on the sky and overall scale. A few precise astrometric
measurements therefore yield theta_E, the angular Einstein ring radius. Then
the angular radius of the source is obtained by theta_*=theta_E(dt/t_E)
sin(phi). We argue that theta_* should be measurable to a few percent accuracy
for Galactic bulge giant stars using ground-based photometry from a network of
small (1m-class) telescopes, combined with astrometric observations with a
precision of ~10 microarcsec to measure theta_E. We find that a factor of ~50
times fewer photons are required to measure theta_E to a given precision for
binary-lens events than single-lens events. Adopting parameters appropriate to
the Space Interferometry Mission (SIM), ~7 min of SIM time is required to
measure theta_E to ~5% accuracy for giant sources in the bulge. For
main-sequence sources, theta_E can be measured to ~15% accuracy in ~1.4 hours.
With 10 hrs of SIM time, it should be possible to measure theta_* to ~5% for
\~80 giant stars, or to 15% for ~7 main sequence stars. A byproduct of such a
campaign is a significant sample of precise binary-lens mass measurements.Comment: 13 pages, 3 figures. Revised version, minor changes, required SIM
integration times revised upward by ~60%. Accepted to ApJ, to appear in the
March 20, 2003 issue (v586
Random Disaggregate Appraisal Error in Commercial Property: Evidence from the Russell-NCREIF Database
This paper examines the magnitude of random disaggregate appraisal valuation error in institutional-grade commercial property. Unlike previous transactions-based studies of appraisal error, we use a much larger database that is not restricted to sold properties, and we employ a methodology that focuses on appraisal error rather than the difference between transaction price and previous appraised value. Our model gives a point estimate of 11.07% for the standard error of appraisals in the Russell-NCREIF database, with a robust range of 6% to 13%.
GeoLab's First Field Trials, 2010 Desert RATS: Evaluating Tools for Early Sample Characterization
As part of an accelerated prototyping project to support science operations tests for future exploration missions, we designed and built a geological laboratory, GeoLab, that was integrated into NASA's first generation Habitat Demonstration Unit-1/Pressurized Excursion Module (HDU1-PEM). GeoLab includes a pressurized glovebox for transferring and handling samples collected on geological traverses, and a suite of instruments for collecting preliminary data to help characterize those samples. The GeoLab and the HDU1-PEM were tested for the first time as part of the 2010 Desert Research and Technology Studies (DRATS), NASA's analog field exercise for testing mission technologies. The HDU1- PEM and GeoLab participated in two weeks of joint operations in northern Arizona with two crewed rovers and the DRATS science team
- …