2,828 research outputs found
The Globular Cluster System in the Inner Region of M87
1057 globular cluster candidates have been identified in a WFPC2 image of the
inner region of M87. The Globular Cluster Luminosity Function (GCLF) can be
well fit by a Gaussian profile with a mean value of m_V^0=23.67 +/- 0.07 mag
and sigma=1.39 +/- 0.06 mag (compared to m_V^0=23.74 mag and sigma=1.44 mag
from an earlier study using the same data by Whitmore it et al. 1995). The GCLF
in five radial bins is found to be statistically the same at all points,
showing no clear evidence of dynamical destruction processes based on the
luminosity function (LF), in contradiction to the claim by Gnedin (1997).
Similarly, there is no obvious correlation between the half light radius of the
clusters and the galactocentric distance. The core radius of the globular
cluster density distribution is R_c=56'', considerably larger than the core of
the stellar component (R_c=6.8''). The mean color of the cluster candidates is
V-I=1.09 mag which corresponds to an average metallicity of Fe/H = -0.74 dex.
The color distribution is bimodal everywhere, with a blue peak at V-I=0.95 mag
and a red peak at V-I=1.20 mag. The red population is only 0.1 magnitude bluer
than the underlying galaxy, indicating that these clusters formed late in the
metal enrichment history of the galaxy and were possibly created in a burst of
star/cluster formation 3-6 Gyr after the blue population. We also find that
both the red and the blue cluster distributions have a more elliptical shape
(Hubble type E3.5) than the nearly spherical galaxy. The average half light
radius of the clusters is ~2.5 pc which is comparable to the 3 pc average
effective radius of the Milky Way clusters, though the red candidates are ~20%
smaller than the blue ones.Comment: 40 pages, 17 figures, 4 tables, latex, accepted for publication in
the Ap
Onset of Phase Synchronization in Neurons Conneted via Chemical Synapses
We study the onset of synchronous states in realistic chaotic neurons coupled
by mutually inhibitory chemical synapses. For the realistic parameters, namely
the synaptic strength and the intrinsic current, this synapse introduces
non-coherences in the neuronal dynamics, yet allowing for chaotic phase
synchronization in a large range of parameters. As we increase the synaptic
strength, the neurons undergo to a periodic state, and no chaotic complete
synchronization is found.Comment: to appear in Int. J. Bif. Chao
Robustness and Enhancement of Neural Synchronization by Activity-Dependent Coupling
We study the synchronization of two model neurons coupled through a synapse
having an activity-dependent strength. Our synapse follows the rules of
Spike-Timing Dependent Plasticity (STDP). We show that this plasticity of the
coupling between neurons produces enlarged frequency locking zones and results
in synchronization that is more rapid and much more robust against noise than
classical synchronization arising from connections with constant strength. We
also present a simple discrete map model that demonstrates the generality of
the phenomenon.Comment: 4 pages, accepted for publication in PR
Towards a Full Census of the Obscure(d) Vela Supercluster using MeerKAT
Recent spectroscopic observations of a few thousand partially obscured
galaxies in the Vela constellation revealed a massive overdensity on
supercluster scales straddling the Galactic Equator (l 272.5deg) at km/s. It remained unrecognised because it is located just beyond the
boundaries and volumes of systematic whole-sky redshift and peculiar velocity
surveys - and is obscured by the Milky Way. The structure lies close to the
apex where residual bulkflows suggest considerable mass excess. The uncovered
Vela Supercluster (VSCL) conforms of a confluence of merging walls, but its
core remains uncharted. At the thickest foreground dust column densities (|b| <
6 deg) galaxies are not visible and optical spectroscopy is not effective. This
precludes a reliable estimate of the mass of VSCL, hence its effect on the
cosmic flow field and the peculiar velocity of the Local Group. Only systematic
HI-surveys can bridge that gap. We have run simulations and will present
early-science observing scenarios with MeerKAT 32 (M32) to complete the census
of this dynamically and cosmologically relevant supercluster. M32 has been put
forward because this pilot project will also serve as precursor project for HI
MeerKAT Large Survey Projects, like Fornax and Laduma. Our calculations have
shown that a survey area of the fully obscured part of the supercluster, where
the two walls cross and the potential core of the supercluster resides, can be
achieved on reasonable time-scales (200 hrs) with M32.Comment: 10 pages, 3 figures, accepted for publication, Proceedings of
Science, workshop on "MeerKAT Science: On the Pathway to the SKA", held in
Stellenbosch 25-27 May 201
Ground-state proton decay of 69Br and implications for the rp-process 68Se waiting-point
The first direct measurement of the proton separation energy, Sp, for the
proton-unbound nucleus 69Br is reported. Of interest is the exponential
dependence of the 2p-capture rate on Sp which can bypass the 68Se waiting-point
in the astrophysical rp process. An analysis of the observed proton decay
spectrum is given in terms of the 69Se mirror nucleus and the influence of Sp
is explored within the context of a single-zone X-ray burst model.Comment: 6 pages, 6 figures, INPC 2010 conference proceeding
Unfolding cross-linkers as rheology regulators in F-actin networks
We report on the nonlinear mechanical properties of a statistically
homogeneous, isotropic semiflexible network cross-linked by polymers containing
numerous small unfolding domains, such as the ubiquitous F-actin cross-linker
Filamin.
We show that the inclusion of such proteins has a dramatic effect on the
large strain behavior of the network. Beyond a strain threshold, which depends
on network density, the unfolding of protein domains leads to bulk shear
softening. Past this critical strain, the network spontaneously organizes
itself so that an appreciable fraction of the Filamin cross-linkers are at the
threshold of domain unfolding. We discuss via a simple mean-field model the
cause of this network organization and suggest that it may be the source of
power-law relaxation observed in in vitro and in intracellular microrheology
experiments. We present data which fully justifies our model for a simplified
network architecture.Comment: 11 pages, 4 figures. to appear in Physical Review
The Spin of M87 as measured from the Rotation of its Globular Clusters
We revisit the kinematical data for 204 globular clusters in the halo of M87.
Beyond 3 r_eff along the major axis of the galaxy light, these globular
clusters exhibit substantial rotation (~ 300 +/- 70 km/s) that translates into
an equally substantial spin (lambda ~ 0.18). The present appearance of M87 is
most likely the product of a single major merger, since this event is best able
to account for so sizable a spin. A rotation this large makes improbable any
significant accretion of material after this merger, since that would have
diluted the rotation signature. We see weak evidence for a difference between
the kinematics of the metal-poor and metal-rich population, in the sense that
the metal-poor globular clusters appear to dominate the rotation. If, as we
suspect, the last major merger event of M87 was mainly dissipationless and did
not trigger the formation of a large number of globular clusters, the kinematic
difference between the two could reflect their orbital properties in the
progenitor galaxies; these differences would be compatible with these
progenitors having formed in dissipational mergers. However, to put strong
kinematic constraints on the origin of the globular clusters themselves is
difficult, given the complex history of the galaxy and its last dominant merger
event.Comment: 20 pages (AAS two column style, including 1 table and 7 figures)
accepted in the AJ (November issue), also available at
http://www.ucolick.org/~mkissler
Mitochondrial Abnormality Associates with Type-Specific Neuronal Loss and Cell Morphology Changes in the Pedunculopontine Nucleus in Parkinson Disease
Cholinergic neuronal loss in the pedunculopontine nucleus (PPN) associates with abnormal functions, including certain motor and nonmotor symptoms. This realization has led to low-frequency stimulation of the PPN for treating patients with Parkinson disease (PD) who are refractory to other treatment modalities. However, the molecular mechanisms underlying PPN neuronal loss and the therapeutic substrate for the clinical benefits following PPN stimulation remain poorly characterized, hampering progress toward designing more efficient therapies aimed at restoring the PPN's normal functions during progressive parkinsonism. Here, we investigated postmortem pathological changes in the PPN of PD cases. Our study detected a loss of neurons producing gamma-aminobutyric acid (GABA) as their output and glycinergic neurons, along with the pronounced loss of cholinergic neurons. These losses were accompanied by altered somatic cell size that affected the remaining neurons of all neuronal subtypes studied here. Because studies showed that mitochondrial dysfunction exists in sporadic PD and in PD animal models, we investigated whether altered mitochondrial composition exists in the PPN. A significant up-regulation of several mitochondrial proteins was seen in GABAergic and glycinergic neurons; however, cholinergic neurons indicated down-regulation of the same proteins. Our findings suggest an imbalance in the activity of key neuronal subgroups of the PPN in PD, potentially because of abnormal inhibitory activity and altered cholinergic outflow
- …