713 research outputs found

    Neutrino spin oscillations in gravitational fields

    Full text link
    We study neutrino spin oscillations in gravitational fields. The quasi-classical approach is used to describe the neutrino spin evolution. First we examine the case of a weak gravitational field. We obtain the effective Hamiltonian for the description of neutrino spin oscillations. We also receive the neutrino transition probability when a particle propagates in the gravitational field of a rotating massive object. Then we apply the general technique to the description of neutrino spin oscillations in the Schwarzschild metric. The neutrino spin evolution equation for the case of the neutrino motion in the vicinity of a black hole is obtained. The effective Hamiltonian and the transition probability are also derived. We examine the neutrino oscillations process on different circular orbits and analyze the frequencies of spin transitions. The validity of the quasi-classical approach is also considered.Comment: RevTeX4, 9 pages, 1 esp figure; article was revised, some misprints were corrected, 6 references added; accepted for publication in Int.J.Mod.Phys.

    Neutrino spin relaxation in medium with stochastic characteristics

    Full text link
    The helicity evolution of a neutrino interacting with randomly moving and polarized matter is studied. We derive the equation for the averaged neutrino helicity. The type of the neutrino interaction with background fermions is not fixed. In the particular case of a tau-neutrino interacting with ultrarelativistic electron-positron plasma we obtain the expression for the neutrino helicity relaxation rate in the explicit form. We study the neutrino spin relaxation in the relativistic primordial plasma. Supposing that the conversion of left-handed neutrinos into right-handed ones is suppressed at the early stages of the Universe evolution we get the upper limit on the tau-neutrino mass.Comment: 6 pages, RevTeX4; 2 references added; more detailed discussion of correlation functions and cosmological neutrinos is presented; version to be published in Int. J. Mod. Phys.

    Creation of Dirac neutrinos in a dense medium with time-dependent effective potential

    Get PDF
    We consider Dirac neutrinos interacting with background fermions in the frame of the standard model. We demonstrate that a time-dependent effective potential is quite possible in a protoneutron star (PNS) at certain stages of its evolution. For the first time, we formulate a nonperturbative treatment of neutrino processes in a matter with arbitrary time-dependent effective potential. Using linearly growing effective potential, we study the typical case of a slowly varying matter interaction potential. We calculate differential mean numbers of ννˉ\nu \bar{\nu} pairs created from the vacuum by this potential and find that they crucially depend on the magnitude of masses of the lightest neutrino eigenstate. These distributions uniformly span up to 10\sim 10 eV energies for muon and tau neutrinos created in PNS core due to the compression just before the hydrodynamic bounce and up to 0.1\sim 0.1 eV energies for all three active neutrino flavors created in the neutronization. Considering different stages of the PNS evolution, we derive constraints on neutrino masses, mν(108107)m_{\nu}\lesssim (10^{-8}-10^{-7}) eV corresponding to the nonvanishing ννˉ\nu \bar{\nu} pairs flux produced by this mechanism. We show that one can distinguish such coherent flux from chaotic fluxes of any other origin. Part of these neutrinos, depending on the flavor and helicity, are bounded in the PNS, while antineutrinos of any flavor escape the PNS. If the created pairs are νeνˉe\nu_{e}\bar{\nu}_{e}, then a part of the corresponding neutrinos also escape the PNS. The detection of ν\nu and νˉ\bar{\nu} with such low energies is beyond current experimental techniques.Comment: 18 pages, Revtex4.1, 1 eps figure, 2 columns; minimal changes, version to be published in Phys. Rev.

    Covariant Treatment of Neutrino Spin (Flavour) Conversion in Matter under the Influence of Electromagnetic Fields

    Full text link
    Within the recently proposed Lorentz invariant formalism for description of neutrino spin evolution in presence of an arbitrary electromagnetic fields effects of matter motion and polarization are considered.Comment: Extended version of contribution to "Particle Physics on Boundary of Millenniums" (Proceedings of the 9th Lomonosov Conference on Elementary Particle Physics, World Scientific, Singapure

    Neutrino spin oscillations in gravitational fields

    Full text link
    We study neutrino spin oscillations in black hole backgrounds. In the case of a charged black hole, the maximum frequency of oscillations is a monotonically increasing function of the charge. For a rotating black hole, the maximum frequency decreases with increasing the angular momentum. In both cases, the frequency of spin oscillations decreases as the distance from the black hole grows. As a phenomenological application of our results, we study simple bipolar neutrino system which is an interesting example of collective neutrino oscillations. We show that the precession frequency of the flavor pendulum as a function of the neutrino number density will be higher for a charged/non-rotating black hole compared with a neutral/rotating black hole respectively.Comment: Replaced with the version accepted for publication in Gravitation and Cosmology, Springer. 10 pages. 4 figure

    Pairing of charged particles in a quantum plasmoid

    Full text link
    We study a quantum spherically symmetric object which is based on radial plasma oscillations. Such a plasmoid is supposed to exist in a dense plasma containing electrons, ions, and neutral particles. The method of creation and annihilation operators is applied to quantize the motion of charged particles in a self-consistent potential. We also study the effective interaction between oscillating particles owing to the exchange of a virtual acoustic wave, which is excited in the neutral component of plasma. It is shown that this interaction can be attractive and result in the formation of ion pairs. We discuss possible applications of this phenomenon in astrophysical and terrestrial plasmas.Comment: 17 pages, no figures, two columns, LaTeX2e; paper was significantly revised; title was changed; 16 new references were included; the discussion on ion-acoustic waves was added to Sec. 2; Secs. 3 and 4 were shortened; a more detailed discussion was added to Sec. 7; accepted for publication to J.Phys.

    First quantized approaches to neutrino oscillations and second quantization

    Full text link
    Neutrino oscillations are treated from the point of view of relativistic first quantized theories and compared to second quantized treatments. Within first quantized theories, general oscillation probabilities can be found for Dirac fermions and charged spin 0 bosons. A clear modification in the oscillation formulas can be obtained and its origin is elucidated and confirmed to be inevitable from completeness and causality requirements. The left-handed nature of created and detected neutrinos can also be implemented in the first quantized Dirac theory in presence of mixing; the probability loss due to the changing of initially left-handed neutrinos to the undetected right-handed neutrinos can be obtained in analytic form. Concerning second quantized approaches, it is shown in a calculation using virtual neutrino propagation that both neutrinos and antineutrinos may also contribute as intermediate particles. The sign of the contributing neutrino energy may have to be chosen explicitly without being automatic in the formalism. At last, a simple second quantized description of the flavor oscillation phenomenon is devised. In this description there is no interference terms between positive and negative components, but it still gives simple normalized oscillation probabilities. A new effect appearing in this context is an inevitable but tiny violation of the initial flavor of neutrinos. The probability loss due to the conversion of left-handed neutrinos to right-handed neutrinos is also presented.Comment: version accepted for publicatio
    corecore