51,404 research outputs found
A Tri-band-notched UWB Antenna with Low Mutual Coupling between the Band-notched Structures
A compact printed U-shape ultra-wideband (UWB) antenna with triple band-notched characteristics is presented. The proposed antenna, with compact size of 24×33 mm2, yields an impedance bandwidth of 2.8-12GHz for VSWR<2, except the notched bands. The notched bands are realized by introducing two different types of slots. Two C-shape half-wavelength slots are etched on the radiating patch to obtain two notched bands in 3.3-3.7GHz for WiMAX and 7.25-7.75GHz for downlink of X-band satellite communication systems. In order to minimize the mutual coupling between the band-notched structures, the middle notched band in 5-6GHz for WLAN is achieved by using a U-slot defected ground structure. The parametric study is carried out to understand the mutual coupling. Surface current distributions and equivalent circuit are used to illustrate the notched mechanism. The performance of this antenna both by simulation and by experiment indicates that the proposed antenna is suitable and a good candidate for UWB applications
Simple model of bouncing ball dynamics: displacement of the table assumed as quadratic function of time
Nonlinear dynamics of a bouncing ball moving in gravitational field and
colliding with a moving limiter is considered. Displacement of the limiter is a
quadratic function of time. Several dynamical modes, such as fixed points, 2 -
cycles and chaotic bands are studied analytically and numerically. It is shown
that chaotic bands appear due to homoclinic structures created from unstable 2
- cycles in a corner-type bifurcation.Comment: 11 pages, 6 figure
Pulsed THz radiation due to phonon-polariton effect in [110] ZnTe crystal
Pulsed terahertz (THz) radiation, generated through optical rectification
(OR) by exciting [110] ZnTe crystal with ultrafast optical pulses, typically
consists of only a few cycles of electromagnetic field oscillations with a
duration about a couple of picoseconds. However, it is possible, under
appropriate conditions, to generate a long damped oscillation tail (LDOT)
following the main cycles. The LDOT can last tens of picoseconds and its
Fourier transform shows a higher and narrower frequency peak than that of the
main pulse. We have demonstrated that the generation of the LDOT depends on
both the duration of the optical pulse and its central wavelength. Furthermore,
we have also performed theoretical calculations based upon the OR effect
coupled with the phonon-polariton mode of ZnTe and obtained theoretical THz
waveforms in good agreement with our experimental observation.Comment: 9 pages, 5 figure
Simple model of bouncing ball dynamics. Displacement of the limiter assumed as a cubic function of time
Nonlinear dynamics of a bouncing ball moving vertically in a gravitational
field and colliding with a moving limiter is considered and the Poincare map,
describing evolution from an impact to the next impact, is described.
Displacement of the limiter is assumed as periodic, cubic function of time. Due
to simplicity of this function analytical computations are possible. Several
dynamical modes, such as fixed points, 2 - cycles and chaotic bands are studied
analytically and numerically. It is shown that chaotic bands are created from
fixed points after first period doubling in a corner-type bifurcation. Equation
for the time of the next impact is solved exactly for the case of two
subsequent impacts occurring in the same period of limiter's motion making
analysis of chattering possible.Comment: 8 pages, 1 figure, presented at the DSTA 2011 conference, Lodz,
Polan
Spatial Symmetry of Superconducting Gap in YBa2Cu3O7-\delta Obtained from Femtosecond Spectroscopy
The polarized femtosecond spectroscopies obtained from well characterized
(100) and (110) YBa2Cu3O7-\delta thin films are reported. This bulk-sensitive
spectroscopy, combining with the well-textured samples, serves as an effective
probe to quasiparticle relaxation dynamics in different crystalline
orientations. The significant anisotropy in both the magnitude of the
photoinduced transient reflectivity change and the characteristic relaxation
time indicates that the nature of the relaxation channel is intrinsically
different in various axes and planes. By the orientation-dependent analysis,
d-wave symmetry of the bulk-superconducting gap in cuprate superconductors
emerges naturally.Comment: 8 pages, 4 figures. To be published in Physical Review B, Rapid
Communication
Identifying Trippers and Non-Trippers Based on Knee Kinematics During Obstacle-Free Walking
Trips are a major cause of falls. Sagittal-plane kinematics affect clearance between the foot and obstacles, however, it is unclear which kinematic measures during obstacle-free walking are associated with avoiding a trip when encountering an obstacle. The purpose of this study was to determine kinematic factors during obstacle-free walking that are related to obstacle avoidance ability. It was expected that successful obstacle avoidance would be associated with greater peak flexion/dorsiflexion and range of motion (ROM), and differences in timing of peak flexion/dorsiflexion during swing of obstacle-free walking for the hip, knee and ankle. Three-dimensional kinematics were recorded as 35 participants (young adults age 18–45 (N = 10), older adults age 65+ without a history of falls (N = 10), older adults age 65+ who had fallen in the last six months (N = 10), and individuals who had experienced a stroke more than six months earlier (N = 5)) walked on a treadmill, under obstacle-free walking conditions with kinematic features calculated for each stride. A separate obstacle avoidance task identified trippers (multiple obstacle contact) and non-trippers. Linear discriminant analysis with sequential feature selection classified trippers and non-trippers based on kinematics during obstacle-free walking. Differences in classification performance and selected features (knee ROM and timing of peak knee flexion during swing) were evaluated between trippers and non-trippers. Non-trippers had greater knee ROM (P = .001). There was no significant difference in classification performance (P = .193). Individuals with reduced knee ROM during obstacle-free walking may have greater difficulty avoiding obstacles
- …