17,220 research outputs found
Air pollution and livestock production
The air in a livestock farming environment contains high concentrations of dust particles and gaseous pollutants. The total inhalable dust can enter the nose and mouth during normal breathing and the thoracic dust can reach into the lungs. However, it is the respirable dust particles that can penetrate further into the gas-exchange region, making it the most hazardous dust component. Prolonged exposure to high concentrations of dust particles can lead to respiratory health issues for both livestock and farming staff. Ammonia, an example of a gaseous pollutant, is derived from the decomposition of nitrous compounds. Increased exposure to ammonia may also have an effect on the health of humans and livestock. There are a number of technologies available to ensure exposure to these pollutants is minimised. Through proactive means, (the optimal design and management of livestock buildings) air quality can be improved to reduce the likelihood of risks associated with sub-optimal air quality. Once air problems have taken hold, other reduction methods need to be applied utilising a more reactive approach. A key requirement for the control of concentration and exposure of airborne pollutants to an acceptable level is to be able to conduct real-time measurements of these pollutants. This paper provides a review of airborne pollution including methods to both measure and control the concentration of pollutants in livestock buildings
Bow-Tie Microstrip Antenna Design
In this paper, the bow-tie microstrip antennas have been designed with two different angles of 40Ă° and 80Ă°. An investigaton on the effect of the angle to the return loss and radiation patterns had been carried out. The impedance matching network with the niicrostrip transmission line feeding was used in this study. Simulation and measurement results for the return loss and radiation patterns were presented
Averting Behavior Framework for Perceived Risk of Yersinia enterocolitica Infections
The focus of this
research is to present a theoretical model of
averting actions that households take to avoid
exposure to Yersinia
enterocolitica in contaminated food.
The cost of illness approach only takes into
account the value of a cure, while the averting
behavior approach can estimate the value of
preventing the illness. The household, rather
than the individual, is the unit of analysis in
this model, where one household member is
primarily responsible for procuring
uncontaminated food for their family. Since
children are particularly susceptible and live
with parents who are primary decision makers for
sustenance, the designated household head makes
the choices that are investigated in this paper.
This model uses constrained optimization to
characterize activities that may offer
protection from exposure to Yersinia
enterocolitica contaminated food. A
representative household decision maker is
assumed to allocate family resources to maximize
utility of an altruistic parent, an assumption
used in most research involving economics of the
family
Strange Fluctuations at RHIC
Robust statistical observables can be used to extract the novel isospin
fluctuations from background contributions in K-short K-plus measurements in
nuclear collisions. To illustrate how this can be done, we present new HIJING
and UrQMD computations of these observables.Comment: 4 pages, 2 figures, talk at Quark Matter 200
Kinematic Self-Similar Plane Symmetric Solutions
This paper is devoted to classify the most general plane symmetric spacetimes
according to kinematic self-similar perfect fluid and dust solutions. We
provide a classification of the kinematic self-similarity of the first, second,
zeroth and infinite kinds with different equations of state, where the
self-similar vector is not only tilted but also orthogonal and parallel to the
fluid flow. This scheme of classification yields twenty four plane symmetric
kinematic self-similar solutions. Some of these solutions turn out to be
vacuum. These solutions can be matched with the already classified plane
symmetric solutions under particular coordinate transformations. As a result,
these reduce to sixteen independent plane symmetric kinematic self-similar
solutions.Comment: 29 pages, accepted for publication in Classical Quantum Gravit
Quantitative Analysis of DoS Attacks and Client Puzzles in IoT Systems
Denial of Service (DoS) attacks constitute a major security threat to today's
Internet. This challenge is especially pertinent to the Internet of Things
(IoT) as devices have less computing power, memory and security mechanisms to
mitigate DoS attacks. This paper presents a model that mimics the unique
characteristics of a network of IoT devices, including components of the system
implementing `Crypto Puzzles' - a DoS mitigation technique. We created an
imitation of a DoS attack on the system, and conducted a quantitative analysis
to simulate the impact such an attack may potentially exert upon the system,
assessing the trade off between security and throughput in the IoT system. We
model this through stochastic model checking in PRISM and provide evidence that
supports this as a valuable method to compare the efficiency of different
implementations of IoT systems, exemplified by a case study
- âŠ