127 research outputs found

    Deep endometriosis infiltrating the recto-sigmoid: critical factors to consider before management

    Get PDF
    Mauricio Simoes Abrao1,, Felice Petraglia2, Tommaso Falcone3, Joerg Keckstein4, Yutaka Osuga5, and Charles Chapron6,7,8 Endometriosis Division, Obstetrics and Gynecological Department – Sao Paulo University, Sao Paulo, Brazil Obstetrics and Gynecology, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy Obstetrics, Gynecology andWomen's Health Institute, Cleveland Clinic, Cleveland, OH, USA Department of Obstetrics and Gynecology, Center for Endometriosis, Villach Hospital, Villach, Austria Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Hongo, Bunkyo, Tokyo, Japan Universite Paris Descartes, Sorbonne Paris Cite, Faculte de Medecine, Assistance Publique – Hopitaux de Paris (APHP), Groupe Hospitalier Universitaire (GHU) Ouest, Centre Hospitalier Universitaire (CHU) Cochin, Department of Gynecology Obstetrics II and Reproductive Medicine, 75679 Paris, France Institut Cochin, Universite Paris Descartes, Sorbonne Paris Cite CNRS (UMR 8104), Paris, France Inserm, Universite Paris Descartes, Sorbonne Paris Cite, Unite de recherche U1016, Paris, Franc

    Inductive Plasma Thruster (IPT) design for an Atmosphere-Breathing Electric Propulsion System (ABEP)

    Get PDF
    Challenging space missions include those at very low altitudes, where the atmosphere is source of aerodynamic drag on the spacecraft, therefore an efficient propulsion system is required to extend the mission lifetime. One solution is Atmosphere-Breathing Electric Propulsion (ABEP). It collects atmospheric particles to use as propellant for an electric thruster. This would minimize the requirement of limited propellant availability. The system could be applied to any planet with atmosphere, enabling new mission at these altitude ranges for continuous orbiting. Challenging is also the presence of reactive chemical species, such as atomic oxygen in Earth orbit. Such components are erosion source of (not only) propulsion system components, i.e. acceleration grids, electrodes, and discharge channels of conventional EP systems (RIT and HET). IRS is developing within the DISCOVERER project an intake and a thruster for an ABEP system. This paper deals with the design and first operation of the inductive plasma thruster (IPT) developed at IRS. The paper describes its design aided by numerical tools such as HELIC and ADAMANT. Such a device is based on RF electrodeless discharge aided by externally applied static magnetic field. The IPT is composed by a movable injector, to variate the discharge channel length, and a movable electromagnet to variate position and intensity of the magnetic field. By changing these parameters along with a novel antenna design for electric propulsion, the aim is to achieve the highest efficiency for the ionization stage by enabling the formation of helicon-based discharge. Finally, the designed IPT is presented and the feature of the birdcage antenna highlighted
    • …
    corecore