313,512 research outputs found
Coupled oscillators and Feynman's three papers
According to Richard Feynman, the adventure of our science of physics is a
perpetual attempt to recognize that the different aspects of nature are really
different aspects of the same thing. It is therefore interesting to combine
some, if not all, of Feynman's papers into one. The first of his three papers
is on the ``rest of the universe'' contained in his 1972 book on statistical
mechanics. The second idea is Feynman's parton picture which he presented in
1969 at the Stony Brook conference on high-energy physics. The third idea is
contained in the 1971 paper he published with his students, where they show
that the hadronic spectra on Regge trajectories are manifestations of
harmonic-oscillator degeneracies. In this report, we formulate these three
ideas using the mathematics of two coupled oscillators. It is shown that the
idea of entanglement is contained in his rest of the universe, and can be
extended to a space-time entanglement. It is shown also that his parton model
and the static quark model can be combined into one Lorentz-covariant entity.
Furthermore, Einstein's special relativity, based on the Lorentz group, can
also be formulated within the mathematical framework of two coupled
oscillators.Comment: 31 pages, 6 figures, based on the concluding talk at the 3rd Feynman
Festival (Collage Park, Maryland, U.S.A., August 2006), minor correction
Density of Yang-Lee zeros for the Ising ferromagnet
The densities of Yang-Lee zeros for the Ising ferromagnet on the
square lattice are evaluated from the exact grand partition functions
(). The properties of the density of Yang-Lee zeros are discussed as
a function of temperature and system size . The three different classes
of phase transitions for the Ising ferromagnet, first-order phase transition,
second-order phase transition, and Yang-Lee edge singularity, are clearly
distinguished by estimating the magnetic scaling exponent from the
densities of zeros for finite-size systems. The divergence of the density of
zeros at Yang-Lee edge in high temperatures (Yang-Lee edge singularity), which
has been detected only by the series expansion until now for the square-lattice
Ising ferromagnet, is obtained from the finite-size data. The identification of
the orders of phase transitions in small systems is also discussed using the
density of Yang-Lee zeros.Comment: to appear in Physical Review
Radiation force on a single atom in a cavity
We consider the radiation pressure microscopically. Two perfectly conducting plates are parallelly placed in a vacuum. As the vacuum field hits the plates they get pressure from the vacuum. The excessive outside modes of the vacuum field push the plates together, which is known as the Casimer force. We investigate the quantization of the standing wave between the plates to study the interaction between this wave and the atoms on the plates or between the plates. We show that even the vacuum field pushes the atom to place it at nodes of the standing wave
Enhanced dynamical entanglement transfer with multiple qubits
We present two strategies to enhance the dynamical entanglement transfer from
continuous variable (CV) to finite dimensional systems by employing multiple
qubits. First, we consider the entanglement transfer to a composite finite
dimensional system of many qubits simultaneously interacting with a bipartite
CV field. We show that, considering realistic conditions in the generation of
CV entanglement, a small number of qubits resonantly coupled to the CV system
is sufficient for an almost complete dynamical transfer of the entanglement.
Our analysis also sheds further light on the transition between microscopic and
macroscopic behaviours of composite finite dimensional systems coupled to
bosonic fields (like atomic clouds interacting with light). Furthermore, we
present a protocol based on sequential interactions of the CV system with some
ancillary qubit systems and on subsequent measurements, allowing to
probabilistically convert CV entanglement into `almost perfect' Bell pairs of
two qubits. Our proposals are suited for realizations in various experimental
settings, ranging from cavity-QED to cavity-integrated superconducting devices.Comment: 10 pages, 8 figures, RevTeX4; terminology revised; accepted for
publicatio
- …