54 research outputs found

    How are biodiversity and dispersal of species affected by the management of roadsides? A systematic map protocol

    Get PDF
    Background: In many parts of the world, roadsides are regularly managed for traffic-safety reasons. Hence, there are similarities between roadsides and certain other managed habitats, such as wooded pastures and mown or grazed grasslands. In contrast to roadsides, the latter habitats have declined rapidly in Europe during the last century, and today only a fraction of their former extent remains. For many species historically associated with these habitats, roadsides may therefore function as new primary habitats or as dispersal corridors in fragmented landscapes. Current recommendations for roadside management to promote conservation values are largely based on studies of plants in semi-natural grasslands, although such areas often differ from roadsides in terms of environmental factors and impacts. Moreover, roadsides provide habitats not only for plants but also for many insects, especially if they are sandy and exposed to the sun. For these reasons, stakeholders in Sweden have emphasised the need for more targeted management recommendations, based on actual studies of roadside biodiversity. Methods: The proposed systematic map is intended to provide an overview of the available evidence on how biodiversity is affected by various forms of roadside management, and how such management influences the dispersal of species along roads or roadsides. Relevant interventions include e.g. mowing, shrub removal, control of invasive/nuisance species, sowing or planting, burning, grazing by livestock, scraping and ditching. Non-intervention or alternative forms of roadside management will be used as comparators. Relevant outcomes include measures of species or genetic diversity, the abundance of individual species or groups of organisms, species distribution patterns, and movement rates of individuals or propagules. Searches will be made for peer-reviewed and grey literature in English and several other languages. No geographical restrictions will be applied, and all species and species groups will be considered

    Crop diversity benefits carabid and pollinator communities in landscapes with semi-natural habitats

    Get PDF
    In agricultural landscapes, arthropods provide essential ecosystem services such as biological pest control and pollination. Intensified crop management practices and homogenization of landscapes have led to declines among such organisms. Semi-natural habitats, associated with high numbers of these organisms, are increasingly lost from agricultural landscapes but diversification by increasing crop diversity has been proposed as a way to reverse observed arthropod declines and thus restore ecosystem services. However, whether or not an increase in the diversity of crop types within a landscape promotes diversity and abundances of pollinating and predaceous arthropods, and how semi-natural habitats might modify this relationship, are not well understood. To test how crop diversity and the proportion of semi-natural habitats within a landscape are related to the diversity and abundance of beneficial arthropod communities, we collected primary data from seven studies focusing on natural enemies (carabids and spiders) and pollinators (bees and hoverflies) from 154 crop fields in Southern Sweden between 2007 and 2017. Crop diversity within a 1-km radius around each field was positively related to the Shannon diversity index of carabid and pollinator communities in landscapes rich in semi-natural habitats. Abundances were mainly affected by the proportion of semi-natural habitats in the landscape, with decreasing carabid and increasing pollinator numbers as the proportion of this habitat type increased. Spiders showed no response to either crop diversity or the proportion of semi-natural habitats. Synthesis and applications. We show that the joint effort of preserving semi-natural habitats and promoting crop diversity in agricultural landscapes is necessary to enhance communities of natural enemies and pollinators. Our results suggest that increasing the diversity of crop types can contribute to the conservation of service-providing arthropod communities, particularly if the diversification of crops targets complex landscapes with a high proportion of semi-natural habitats

    A neutron, X-ray and electron diffraction study of the structures of Pb3O2X2(X = Cl, Br)

    No full text
    The crystal structures of the compounds Pb3O2Br2 and Pb3O2Cl2 have been re-refined from neutron powder diffraction data. They are found to be more closely isostructural than previous reports suggested. The major difference between the present refinement
    • …
    corecore