2,646 research outputs found

    A flowsheet-based model approach to reduce water consumption and improve water networks management in the steel sector

    Get PDF
    Resource consumption is an important topic for steelmaking industry, which is spending significant efforts to reduce its environmental impact and improve its competitiveness. Water is largely exploited in steelworks for indirect and direct cooling, specific surface treatment, and fumes washing and cooling. It is already reused and recycled after restoring its quality through treatments for temperature and/or pollutant reduction. However, sometimes water networks are not optimized due to outdated water treatments, lack of continuous monitoring, and water network management strategies often based on experience without automation. In recent years, new water treatments, simulation, and optimization tools are becoming available, together with a stronger awareness of the importance of online parameters monitoring. Therefore, improvement of water cleaning, reuse, recycling, and consequent reduction of impact related to water exploitation are potentially achievable. The introduction of innovative treatments must be tested before their implementation in steel plants and the exploration of their behavior in different operating conditions is fundamental. The presented work addresses this topic through the application of several models of operational units, developed in OpenModelica environment and aggregated into a plant simulator. The simulator was used in different case studies related to an Italian plant to assess the impact of new filtering technology for reducing suspended solids on the analyzed water networks and test the effects of different operating configurations on the treatment efficiency. The introduction of new filtration technology leads to environmental and economic advantages due to freshwater intake reduction and water management improvemen

    Operational experience with the GEM detector assembly lines for the CMS forward muon upgrade

    Get PDF
    The CMS Collaboration has been developing large-area triple-gas electron multiplier (GEM) detectors to be installed in the muon Endcap regions of the CMS experiment in 2019 to maintain forward muon trigger and tracking performance at the High-Luminosity upgrade of the Large Hadron Collider (LHC); 10 preproduction detectors were built at CERN to commission the first assembly line and the quality controls (QCs). These were installed in the CMS detector in early 2017 and participated in the 2017 LHC run. The collaboration has prepared several additional assembly and QC lines for distributed mass production of 160 GEM detectors at various sites worldwide. In 2017, these additional production sites have optimized construction techniques and QC procedures and validated them against common specifications by constructing additional preproduction detectors. Using the specific experience from one production site as an example, we discuss how the QCs make use of independent hardware and trained personnel to ensure fast and reliable production. Preliminary results on the construction status of CMS GEM detectors are presented with details of the assembly sites involvement

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore