1,551 research outputs found

    Nitrogen tetroxide flow decay study for the Orbital Workshop Propulsion System Final report

    Get PDF
    Flow decay of nitrogen tetroxide in Orbital Workshop Propulsion Syste

    Integration and Athletics: Integrating the Marshall University Basketball Program, 1954-1969

    Get PDF
    In 1954, Marshall College followed the national law that banned segregation in the school systems of the United States. The law included the integration of athletic programs. While only a small part of the process, athletic programs often presented integration on a more visible stage than the integration of classrooms

    Let\u27s Swap Copyright for Code: The Computer Software Disclosure Dichotomy

    Get PDF

    2,2,2-Tris(pyrazol-1-yl)ethanol

    Get PDF
    The title compound TPE, C11H12N6O, was prepared by slow evaporation from diethyl ether. In the crystal, there is a hydrogen bond between the alcohol H atom and an N in the pyrazole ring of a neighboring mol­ecule

    Late metal-silicate separation on the IAB parent asteroid: Constraints from combined W and Pt isotopes and thermal modelling

    Full text link
    The short-lived 182^{182}Hf-182^{182}W decay system is a powerful chronometer for constraining the timing of metal-silicate separation and core formation in planetesimals and planets. Neutron capture effects on W isotopes, however, significantly hamper the application of this tool. In order to correct for neutron capture effects, Pt isotopes have emerged as a reliable in-situ neutron dosimeter. This study applies this method to IAB iron meteorites, in order to constrain the timing of metal segregation on the IAB parent body. The ϵ182\epsilon^{182}W values obtained for the IAB iron meteorites range from -3.61 ±\pm 0.10 to -2.73 ±\pm 0.09. Correlating ϵi\epsilon^{\mathrm{i}}Pt with 182^{182}W data yields a pre-neutron capture 182^{182}W of -2.90 ±\pm 0.06. This corresponds to a metal-silicate separation age of 6.0 ±\pm 0.8 Ma after CAI for the IAB parent body, and is interpreted to represent a body-wide melting event. Later, between 10 and 14 Ma after CAI, an impact led to a catastrophic break-up and subsequent reassembly of the parent body. Thermal models of the interior evolution that are consistent with these estimates suggest that the IAB parent body underwent metal-silicate separation as a result of internal heating by short-lived radionuclides and accreted at around 1.4 ±\pm 0.1 Ma after CAIs with a radius of greater than 60 km.Comment: 11 pages, 8 figures, 2 tables; open access article under the CC BY-NC-ND license (see http://creativecommons.org/licenses/by-nc-nd/4.0/

    Spin Gap in Two-Dimensional Heisenberg Model for CaV4_4O9_9

    Full text link
    We investigate the mechanism of spin gap formation in a two-dimensional model relevant to Mott insulators such as CaV4_4O9_9. From the perturbation expansion and quantum Monte Carlo calculations, the origin of the spin gap is ascribed to the four-site plaquette singlet in contrast to the dimer gap established in the generalized dimerized Heisenberg model.Comment: 8 pages, 6 figures available upon request (Revtex

    Axisymmetric Calculations of a Low-Boom Inlet in a Supersonic Wind Tunnel

    Get PDF
    This paper describes axisymmetric CFD predictions made of a supersonic low-boom inlet with a facility diffuser, cold pipe, and mass flow plug within wind tunnel walls, and compares the CFD calculations with the experimental data. The inlet was designed for use on a small supersonic aircraft that would cruise at Mach 1.6, with a Mach number over the wing of 1.7. The inlet was tested in the 8-ft by 6-ft Supersonic Wind Tunnel at NASA Glenn Research Center in the fall of 2010 to demonstrate the performance and stability of a practical flight design that included a novel bypass duct. The inlet design is discussed here briefly. Prior to the test, CFD calculations were made to predict the performance of the inlet and its associated wind tunnel hardware, and to estimate flow areas needed to throttle the inlet. The calculations were done with the Wind-US CFD code and are described in detail. After the test, comparisons were made between computed and measured shock patterns, total pressure recoveries, and centerline pressures. The results showed that the dual-stream inlet had excellent performance, with capture ratios near one, a peak core total pressure recovery of 96 percent, and a large stable operating range. Predicted core recovery agreed well with the experiment but predicted bypass recovery and maximum capture ratio were high. Calculations of offdesign performance of the inlet along a flight profile agreed well with measurements and previous calculations

    Probleme und politische Einstellungen in Heidelberg

    Get PDF
    Umfrage zu Problemen und politischen Einstellungen in Heidelberg im Vorfeld der Kommunanal- und Europawahlen 1994. 662 Telefoninterviews

    Nature of the Spin-glass State in the Three-dimensional Gauge Glass

    Full text link
    We present results from simulations of the gauge glass model in three dimensions using the parallel tempering Monte Carlo technique. Critical fluctuations should not affect the data since we equilibrate down to low temperatures, for moderate sizes. Our results are qualitatively consistent with earlier work on the three and four dimensional Edwards-Anderson Ising spin glass. We find that large scale excitations cost only a finite amount of energy in the thermodynamic limit, and that those excitations have a surface whose fractal dimension is less than the space dimension, consistent with a scenario proposed by Krzakala and Martin, and Palassini and Young.Comment: 5 pages, 7 figure

    Numerical studies of the 2 and 3D gauge glass at low temperature

    Full text link
    We report results from Monte Carlo simulations of the two- and three-dimensional gauge glass at low temperature using parallel tempering Monte Carlo. In two dimensions, we find strong evidence for a zero-temperature transition. By means of finite-size scaling, we determine the stiffness exponent theta = -0.39 +/- 0.03. In three dimensions, where a finite-temperature transition is well established, we find theta = 0.27 +/- 0.01, compatible with recent results from domain-wall renormalization group studies.Comment: 3 pages, 3 figures. Proceedings of "2002 MMM Conference", Tampa, F
    • …
    corecore