469 research outputs found

    The new versatile general purpose surface-muon instrument (GPS) based on silicon photomultipliers for ÎĽ{\mu}SR measurements on a continuous-wave beam

    Full text link
    We report on the design and commissioning of a new spectrometer for muon-spin relaxation/rotation studies installed at the Swiss Muon Source (SÎĽ\muS) of the Paul Scherrer Institute (PSI, Switzerland). This new instrument is essentially a new design and replaces the old general-purpose surface-muon instrument (GPS) which has been for long the workhorse of the ÎĽ\muSR user facility at PSI. By making use of muon and positron detectors made of plastic scintillators read out by silicon photomultipliers (SiPMs), a time resolution of the complete instrument of about 160 ps (standard deviation) could be achieved. In addition, the absence of light guides, which are needed in traditionally built ÎĽ\muSR instrument to deliver the scintillation light to photomultiplier tubes located outside magnetic fields applied, allowed us to design a compact instrument with a detector set covering an increased solid angle compared to the old GPS.Comment: 11 pages, 11 figure

    Pressure Induced Static Magnetic Order in Superconducting FeSe_1-x

    Full text link
    We report on a detailed investigation of the electronic phase diagram of FeSe_1-x under pressures up to 1.4GPa by means of AC magnetization and muon-spin rotation. At a pressure \simeq0.8GPa the non-magnetic and superconducting FeSe_1-x enters a region where long range static magnetic order is realized above T_c and bulk superconductivity coexists and competes on short length scales with the magnetic order below T_c. For even higher pressures an enhancement of both the magnetic and the superconducting transition temperatures as well as of the corresponding order parameters is observed. These exceptional properties make FeSe1-x to be one of the most interesting superconducting systems investigated extensively at present.Comment: 5 pages, 3 figure

    Detection of the VUV liquid argon scintillation light by means of glass-window photomultiplier tubes

    Get PDF
    Abstract The experimental results coming from an intense R&D study about the possibility of detecting the light produced by the liquid argon scintillation certify the use of glass-window photomultiplier tubes. The devices, working in cryogenic liquid, are made sensitive to the VUV photons by means of a wavelength shifter coating. This is a useful detection method to provide an effective way for the absolute time measurement and trigger of ionizing events occurring in Time Projection Chambers

    WARP: a WIMP double phase Argon detector

    Full text link
    The WARP programme for dark matter search with a double phase argon detector is presented. In such a detector both excitation and ionization produced by an impinging particle are evaluated by the contemporary measurement of primary scintillation and secondary (proportional) light signal, this latter being produced by extracting and accelerating ionization electrons in the gas phase. The proposed technique, verified on a 2.3 liters prototype, could be used to efficiently discriminate nuclear recoils, induced by WIMP's interactions, and measure their energy spectrum. An overview of the 2.3 liters results and of the proposed 100 liters detector is shown.Comment: Proceeding for IDM200

    Demonstration and Comparison of Operation of Photomultiplier Tubes at Liquid Argon Temperature

    Full text link
    Liquified noble gases are widely used as a target in direct Dark Matter searches. Signals from scintillation in the liquid, following energy deposition from the recoil nuclei scattered by Dark Matter particles (e.g. WIMPs), should be recorded down to very low energies by photosensors suitably designed to operate at cryogenic temperatures. Liquid Argon based detectors for Dark Matter searches currently implement photo multiplier tubes for signal read-out. In the last few years PMTs with photocathodes operating down to liquid Argon temperatures (87 K) have been specially developed with increasing Quantum Efficiency characteristics. The most recent of these, Hamamatsu Photonics Mod. R11065 with peak QE up to about 35%, has been extensively tested within the R&D program of the WArP Collaboration. During these testes the Hamamatsu PMTs showed superb performance and allowed obtaining a light yield around 7 phel/keVee in a Liquid Argon detector with a photocathodic coverage in the 12% range, sufficient for detection of events down to few keVee of energy deposition. This shows that this new type of PMT is suited for experimental applications, in particular for new direct Dark Matter searches with LAr-based experiments
    • …
    corecore