12,673 research outputs found
Tolman mass, generalized surface gravity, and entropy bounds
In any static spacetime the quasi-local Tolman mass contained within a volume
can be reduced to a Gauss-like surface integral involving the flux of a
suitably defined generalized surface gravity. By introducing some basic
thermodynamics and invoking the Unruh effect one can then develop elementary
bounds on the quasi-local entropy that are very similar in spirit to the
holographic bound, and closely related to entanglement entropy.Comment: V1: 4 pages. Uses revtex4-1; V2: Three references added; V3: Some
notational changes for clarity; introductory paragraph rewritten; no physics
changes. This version accepted for publication in Physical Review Letter
An analytical decomposition protocol for optimal implementation of two-qubit entangling gates
This paper addresses the question how to implement a desired two-qubit gate U
using a given tunable two-qubit entangling interaction H_int. We present a
general method which is based on the K_1 A K_2 decomposition of unitary
matrices in SU(4) to calculate analytically the smallest number of two-qubit
gates U_int [based on H_int] and single-qubit rotations, and the explicit
sequence of these operations that are required to implement U. We illustrate
our protocol by calculating the implementation of (1) the transformation from
standard basis to Bell basis, (2) the CNOT gate, and (3) the quantum Fourier
transform for two kinds of interaction - Heisenberg exchange interaction and
quantum inductive coupling - and discuss the relevance of our results for
solid-state qubits.Comment: 16 pages, published versio
Geometric structure of the generic static traversable wormhole throat
Traversable wormholes have traditionally been viewed as intrinsically
topological entities in some multiply connected spacetime. Here, we show that
topology is too limited a tool to accurately characterize a generic traversable
wormhole: in general one needs geometric information to detect the presence of
a wormhole, or more precisely to locate the wormhole throat. For an arbitrary
static spacetime we shall define the wormhole throat in terms of a
2-dimensional constant-time hypersurface of minimal area. (Zero trace for the
extrinsic curvature plus a "flare-out" condition.) This enables us to severely
constrain the geometry of spacetime at the wormhole throat and to derive
generalized theorems regarding violations of the energy conditions-theorems
that do not involve geodesic averaging but nevertheless apply to situations
much more general than the spherically symmetric Morris-Thorne traversable
wormhole. [For example: the null energy condition (NEC), when suitably weighted
and integrated over the wormhole throat, must be violated.] The major technical
limitation of the current approach is that we work in a static spacetime-this
is already a quite rich and complicated system.Comment: 25 pages; plain LaTeX; uses epsf.sty (four encapsulated postscript
figures
Cosmodynamics: Energy conditions, Hubble bounds, density bounds, time and distance bounds
We refine and extend a programme initiated by one of the current authors
[Science 276 (1997) 88; Phys. Rev. D56 (1997) 7578] advocating the use of the
classical energy conditions of general relativity in a cosmological setting to
place very general bounds on various cosmological parameters. We show how the
energy conditions can be used to bound the Hubble parameter H(z), Omega
parameter Omega(z), density rho(z), distance d(z), and lookback time T(z) as
(relatively) simple functions of the redshift z, present-epoch Hubble parameter
H_0, and present-epoch Omega parameter Omega_0. We compare these results with
related observations in the literature, and confront the bounds with the recent
supernova data.Comment: 21 pages, 2 figure
Effective 4D propagation of a charged scalar particle in Visser brane world
In this work we extend an analysis due to Visser of the effective propagation
of a neutral scalar particle on a brane world scenario which is a particular
solution of the five dimensional Einstein-Maxwell equations with cosmological
constant having an electric field pointing in the extra spatial dimension. We
determine the dispersion relations of a charged scalar particle to first order
in a perturbative analysis around those of the neutral particle. Since
depending on whether the particle is charged or not the dispersion relations
change, we could collect bulk information, namely the presence of the electric
field, by studying the 4D dynamics of the particles.Comment: 12 pages, 5 figure
Theorems on gravitational time delay and related issues
Two theorems related to gravitational time delay are proven. Both theorems
apply to spacetimes satisfying the null energy condition and the null generic
condition. The first theorem states that if the spacetime is null geodesically
complete, then given any compact set , there exists another compact set
such that for any , if there exists a ``fastest null
geodesic'', , between and , then cannot enter . As
an application of this theorem, we show that if, in addition, the spacetime is
globally hyperbolic with a compact Cauchy surface, then any observer at
sufficiently late times cannot have a particle horizon. The second theorem
states that if a timelike conformal boundary can be attached to the spacetime
such that the spacetime with boundary satisfies strong causality as well as a
compactness condition, then any ``fastest null geodesic'' connecting two points
on the boundary must lie entirely within the boundary. It follows from this
theorem that generic perturbations of anti-de Sitter spacetime always produce a
time delay relative to anti-de Sitter spacetime itself.Comment: 15 pages, 1 figure. Example of gauge perturbation changed/corrected.
Two footnotes added and one footnote remove
Gravitational vacuum polarization III: Energy conditions in the (1+1) Schwarzschild spacetime
Building on a pair of earlier papers, I investigate the various point-wise
and averaged energy conditions for the quantum stress-energy tensor
corresponding to a conformally-coupled massless scalar field in the in the
(1+1)-dimensional Schwarzschild spacetime. Because the stress-energy tensors
are analytically known, I can get exact results for the Hartle--Hawking,
Boulware, and Unruh vacua. This exactly solvable model serves as a useful
sanity check on my (3+1)-dimensional investigations wherein I had to resort to
a mixture of analytic approximations and numerical techniques. Key results in
(1+1) dimensions are: (1) NEC is satisfied outside the event horizon for the
Hartle--Hawking vacuum, and violated for the Boulware and Unruh vacua. (2) DEC
is violated everywhere in the spacetime (for any quantum state, not just the
standard vacuum states).Comment: 7 pages, ReV_Te
Effective refractive index tensor for weak field gravity
Gravitational lensing in a weak but otherwise arbitrary gravitational field
can be described in terms of a 3 x 3 tensor, the "effective refractive index".
If the sources generating the gravitational field all have small internal
fluxes, stresses, and pressures, then this tensor is automatically isotropic
and the "effective refractive index" is simply a scalar that can be determined
in terms of a classic result involving the Newtonian gravitational potential.
In contrast if anisotropic stresses are ever important then the gravitational
field acts similarly to an anisotropic crystal. We derive simple formulae for
the refractive index tensor, and indicate some situations in which this will be
important.Comment: V1: 8 pages, no figures, uses iopart.cls. V2: 13 pages, no figures.
Significant additions and clarifications. This version to appear in Classical
and Quantum Gravit
Tolman wormholes violate the strong energy condition
For an arbitrary Tolman wormhole, unconstrained by symmetry, we shall define
the bounce in terms of a three-dimensional edgeless achronal spacelike
hypersurface of minimal volume. (Zero trace for the extrinsic curvature plus a
"flare-out" condition.) This enables us to severely constrain the geometry of
spacetime at and near the bounce and to derive general theorems regarding
violations of the energy conditions--theorems that do not involve geodesic
averaging but nevertheless apply to situations much more general than the
highly symmetric FRW-based subclass of Tolman wormholes. [For example: even
under the mildest of hypotheses, the strong energy condition (SEC) must be
violated.] Alternatively, one can dispense with the minimal volume condition
and define a generic bounce entirely in terms of the motion of test particles
(future-pointing timelike geodesics), by looking at the expansion of their
timelike geodesic congruences. One re-confirms that the SEC must be violated at
or near the bounce. In contrast, it is easy to arrange for all the other
standard energy conditions to be satisfied.Comment: 8 pages, ReV-TeX 3.
From wormhole to time machine: Comments on Hawking's Chronology Protection Conjecture
The recent interest in ``time machines'' has been largely fueled by the
apparent ease with which such systems may be formed in general relativity,
given relatively benign initial conditions such as the existence of traversable
wormholes or of infinite cosmic strings. This rather disturbing state of
affairs has led Hawking to formulate his Chronology Protection Conjecture,
whereby the formation of ``time machines'' is forbidden. This paper will use
several simple examples to argue that the universe appears to exhibit a
``defense in depth'' strategy in this regard. For appropriate parameter regimes
Casimir effects, wormhole disruption effects, and gravitational back reaction
effects all contribute to the fight against time travel. Particular attention
is paid to the role of the quantum gravity cutoff. For the class of model
problems considered it is shown that the gravitational back reaction becomes
large before the Planck scale quantum gravity cutoff is reached, thus
supporting Hawking's conjecture.Comment: 43 pages,ReV_TeX,major revision
- …