1,174 research outputs found

    Observation of a temperature dependent electrical resistance minimum above the magnetic ordering temperature in Gd2_2PdSi3_3

    Get PDF
    Results on electrical resistivity, magnetoresistance, magnetic Results on electrical resistivity, magnetoresistance, magnetic susceptibility, heat capacity and Gd Mossbauer measurements on a Gd-based intermetallic compound, Gd2_{2}PdSi3_{3} are reported. A finding of interest is that the resistivity unexpectedly shows a well-defined minimum at about 45 K, well above the long range magnetic ordering temperature (21 K), a feature which gets suppressed by the application of a magnetic field. This observation in a Gd alloy presents an interesting scenario. On the basis of our results, we propose electron localization induced by s-f (or d-f) exchange interaction prior to long range magnetic order as a mechanism for the electrical resistance minimum.Comment: 4 pages, 4 figure

    Fluvial Sediment Aggradation and Incision in NW Sub-Himalaya

    Get PDF
    Abstract HKT-ISTP 2013 A

    Actas del primer simposio nacional de arte rupestre (Cusco, noviembre 2004)

    Get PDF

    Conversion of an Atomic Fermi Gas to a Long-Lived Molecular Bose Gas

    Full text link
    We have converted an ultracold Fermi gas of 6^6Li atoms into an ultracold gas of 6^6Li2_2 molecules by adiabatic passage through a Feshbach resonance. Approximately 1.5×1051.5 \times 10^5 molecules in the least-bound, v=38v = 38, vibrational level of the X1Σg+^1 \Sigma ^+_g singlet state are produced with an efficiency of 50%. The molecules remain confined in an optical trap for times of up to 1 s before we dissociate them by a reverse adiabatic sweep.Comment: Accepted for publication in Phys. Rev. Letter

    Neutron-induced background in the CONUS experiment

    Full text link
    CONUS is a novel experiment aiming at detecting elastic neutrino nucleus scattering in the fully coherent regime using high-purity Germanium (Ge) detectors and a reactor as antineutrino (νˉ\bar\nu) source. The detector setup is installed at the commercial nuclear power plant in Brokdorf, Germany, at a very small distance to the reactor core in order to guarantee a high flux of more than 1013νˉ^{13}\bar\nu/(s\cdotcm2^2). For the experiment, a good understanding of neutron-induced background events is required, as the neutron recoil signals can mimic the predicted neutrino interactions. Especially neutron-induced events correlated with the thermal power generation are troublesome for CONUS. On-site measurements revealed the presence of a thermal power correlated, highly thermalized neutron field with a fluence rate of (745±\pm30)cm2^{-2}d1^{-1}. These neutrons that are produced by nuclear fission inside the reactor core, are reduced by a factor of \sim1020^{20} on their way to the CONUS shield. With a high-purity Ge detector without shield the γ\gamma-ray background was examined including highly thermal power correlated 16^{16}N decay products as well as γ\gamma-lines from neutron capture. Using the measured neutron spectrum as input, it was shown, with the help of Monte Carlo simulations, that the thermal power correlated field is successfully mitigated by the installed CONUS shield. The reactor-induced background contribution in the region of interest is exceeded by the expected signal by at least one order of magnitude assuming a realistic ionization quenching factor of 0.2.Comment: 28 pages, 28 figure

    A model for conservative chaos constructed from multi-component Bose-Einstein condensates with a trap in 2 dimensions

    Full text link
    To show a mechanism leading to the breakdown of a particle picture for the multi-component Bose-Einstein condensates(BECs) with a harmonic trap in high dimensions, we investigate the corresponding 2-dd nonlinear Schr{\"o}dinger equation (Gross-Pitaevskii equation) with use of a modified variational principle. A molecule of two identical Gaussian wavepackets has two degrees of freedom(DFs), the separation of center-of-masses and the wavepacket width. Without the inter-component interaction(ICI) these DFs show independent regular oscillations with the degenerate eigen-frequencies. The inclusion of ICI strongly mixes these DFs, generating a fat mode that breaks a particle picture, which however can be recovered by introducing a time-periodic ICI with zero average. In case of the molecule of three wavepackets for a three-component BEC, the increase of amplitude of ICI yields a transition from regular to chaotic oscillations in the wavepacket breathing.Comment: 5 pages, 4 figure

    Suppression of the ferromagnetic state in LaCoO3 films by rhombohedral distortion

    Full text link
    Epitaxially strained LaCoO3 (LCO) thin films were grown with different film thickness, t, on (001) oriented (LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7 (LSAT) substrates. After initial pseudomorphic growth the films start to relieve their strain partly by the formation of periodic nano-twins with twin planes predominantly along the direction. Nano-twinning occurs already at the initial stage of growth, albeit in a more moderate way. Pseudomorphic grains, on the other hand, still grow up to a thickness of at least several tenths of nanometers. The twinning is attributed to the symmetry lowering of the epitaxially strained pseudo-tetragonal structure towards the relaxed rhombohedral structure of bulk LCO. However, the unit-cell volume of the pseudo-tetragonal structure is found to be nearly constant over a very large range of t. Only films with t > 130 nm show a significant relaxation of the lattice parameters towards values comparable to those of bulk LCO.Comment: 31 pages, 10 figure

    Effectively attractive Bose-Einstein condensates in a rotating toroidal trap

    Full text link
    We examine an effectively attractive quasi-one-dimensional Bose-Einstein condensate of atoms confined in a rotating toroidal trap, as the magnitude of the coupling constant and the rotational frequency are varied. Using both a variational mean-field approach, as well as a diagonalization technique, we identify the phase diagram between a uniform and a localized state and we describe the system in the two phases.Comment: 4 pages, 4 ps figures, RevTe

    Gap solitons in superfluid boson-fermion mixtures

    Full text link
    Using coupled equations for the bosonic and fermionic order parameters, we construct families of gap solitons (GSs) in a nearly one-dimensional Bose-Fermi mixture trapped in a periodic optical-lattice (OL) potential, the boson and fermion components being in the states of the BEC and BCS superfluid, respectively. Fundamental GSs are compact states trapped, essentially, in a single cell of the lattice. Full families of such solutions are constructed in the first two bandgaps of the OL-induced spectrum, by means of variational and numerical methods, which are found to be in good agreement. The families include both intra-gap and inter-gap solitons, with the chemical potentials of the boson and fermion components falling in the same or different bandgaps, respectively.Nonfundamental states, extended over several lattice cells, are constructed too. The GSs are stable against strong perturbations.Comment: 9 pages, 14 figure
    corecore