56 research outputs found
Technology Innovation Enabling Falls Risk Assessment in a Community Setting
Approximately one in three people over the age of 65 will fall each year, resulting in significant financial, physical, and emotional cost on the individual, their family, and society. Currently, falls are managed using on-body sensors and alarm pendants to notify others when a falls event occurs. However these technologies do not prevent a fall from occurring. There is now a growing focus on falls risk assessment and preventative interventions. Falls risk is currently assessed in a clinical setting by expert physiotherapists, geriatricians, or occupational therapists following the occurrence of an injurious fall. As the population ages, this reactive model of care will become increasingly unsatisfactory, and a proactive community-based prevention strategy will be required. Recent advances in technology can support this new model of care by enabling community-based practitioners to perform tests that previously required expensive technology or expert interpretation. Gait and balance impairment is one of the most common risk factors for falls. This paper reviews the current technical and non-technical gait and balance assessments, discusses how low-cost technology can be applied to objectively administer and interpret these tests in the community, and reports on recent research where body-worn sensors have been utilized. It also discusses the barriers to adoption in the community and proposes ethnographic research as a method to investigate solutions to these barriers
Recommended from our members
On-demand fuzzy clustering and ant-colony optimisation based mobile data collection in wireless sensor network
In a wireless sensor network (WSN), sensor nodes collect data from the environment and transfer this data to an end user through multi-hop communication. This results in high energy dissipation of the devices. Thus, balancing of energy consumption is a major concern in such kind of network. Appropriate cluster head (CH) selection may provide to be an efficient way to reduce the energy dissipation and prolonging the network lifetime in WSN. This paper has adopted the concept of fuzzy if-then rules to choose the cluster head based on certain fuzzy descriptors. To optimise the fuzzy membership functions, Particle Swarm Optimisation (PSO) has been used to improve their ranges. Moreover, recent study has confirmed that the introduction of a mobile collector in a network which collects data through short-range communications also aids in high energy conservation. In this work, the network is divided into clusters and a mobile collector starts from the static sink or base station and moves through each of these clusters and collect data from the chosen cluster heads in a single-hop fashion. Mobility based on Ant-Colony Optimisation (ACO) has already proven to be an efficient method which is utilised in this work. Additionally, instead of performing clustering in every round, CH is selected on demand. The performance of the proposed algorithm has been compared with some existing clustering algorithms. Simulation results show that the proposed protocol is more energy-efficient and provides better packet delivery ratio as compared to the existing protocols for data collection obtained through Matlab Simulations
Use of nanomaterials in the pretreatment of water samples for environmental analysis
The challenge of providing clean drinking water is of enormous relevance in todayâs human civilization, being essential for human consumption, but also for agriculture, livestock and several industrial applications. In addition to remediation strategies, the accurate monitoring of pollutants in water sup-plies, which most of the times are present at low concentrations, is a critical challenge. The usual low concentration of target analytes, the presence of in-terferents and the incompatibility of the sample matrix with instrumental techniques and detectors are the main reasons that renders sample preparation a relevant part of environmental monitoring strategies. The discovery and ap-plication of new nanomaterials allowed improvements on the pretreatment of water samples, with benefits in terms of speed, reliability and sensitivity in analysis. In this chapter, the use of nanomaterials in solid-phase extraction (SPE) protocols for water samples pretreatment for environmental monitoring is addressed. The most used nanomaterials, including metallic nanoparticles, metal organic frameworks, molecularly imprinted polymers, carbon-based nanomaterials, silica-based nanoparticles and nanocomposites are described, and their applications and advantages overviewed. Main gaps are identified and new directions on the field are suggested.publishe
- âŠ