11 research outputs found

    Angle-dependence of the Hall effect in HgBa2CaCu2O6 thin films

    Full text link
    Superconducting compounds of the family Hg-Ba-Ca-Cu-O have been the subject of intense study since the current record-holder for the highest critical temperature of a superconductor belongs to this class of materials. Thin films of the compound with two adjacent copper-oxide layers and a critical temperature of about 120 K were prepared by a two-step process that consists of the pulsed-laser deposition of precursor films and the subsequent annealing in mercury-vapor atmosphere. Like some other high-temperature superconductors, Hg-Ba-Ca-Cu-O exhibits a specific anomaly of the Hall effect, a double-sign change of the Hall coefficient close to the superconducting transition. We have investigated this phenomenon by measurements of the Hall effect at different angles between the magnetic field direction and the crystallographic c-axis. The results concerning the upper part of the transition, where the first sign change occurs, are discussed in terms of the renormalized fluctuation model for the Hall conductivity, adapted through the field rescaling procedure in order to take into account the arbitrary orientation of the magnetic field.Comment: to be published in Phys. Rev.

    Confinement effects on glass forming liquids probed by DMA

    Full text link
    Many molecular glass forming liquids show a shift of the glass transition T-g to lower temperatures when the liquid is confined into mesoporous host matrices. Two contrary explanations for this effect are given in literature: First, confinement induced acceleration of the dynamics of the molecules leads to an effective downshift of T-g increasing with decreasing pore size. Second, due to thermal mismatch between the liquid and the surrounding host matrix, negative pressure develops inside the pores with decreasing temperature, which also shifts T-g to lower temperatures. Here we present dynamic mechanical analysis measurements of the glass forming liquid salol in Vycor and Gelsil with pore sizes of d=2.6, 5.0 and 7.5 nm. The dynamic complex elastic susceptibility data can be consistently described with the assumption of two relaxation processes inside the pores: A surface induced slowed down relaxation due to interaction with rough pore interfaces and a second relaxation within the core of the pores. This core relaxation time is reduced with decreasing pore size d, leading to a downshift of T-g proportional to 1/d in perfect agreement with recent differential scanning calorimetry (DSC) measurements. Thermal expansion measurements of empty and salol filled mesoporous samples revealed that the contribution of negative pressure to the downshift of T-g is small (<30%) and the main effect is due to the suppression of dynamically correlated regions of size xi when the pore size xi approaches

    Inhomogeneous superconductivity in organic conductors: role of disorder and magnetic field

    Full text link
    Several experimental studies have shown the presence of spatially inhomogeneous phase coexistence of superconducting and non superconducting domains in low dimensional organic superconductors. The superconducting properties of these systems are found to be strongly dependent on the amount of disorder introduced in the sample regardless of its origin. The suppression of the superconducting transition temperature TcT_c shows clear discrepancy with the result expected from the Abrikosov-Gor'kov law giving the behavior of TcT_c with impurities. Based on the time dependent Ginzburg-Landau theory, we derive a model to account for the striking feature of TcT_c in organic superconductors for different types of disorder by considering the segregated texture of the system. We show that the calculated TcT_c quantitatively agrees with experiments. We also focus on the role of superconducting fluctuations on the upper critical fields Hc2H_{c2} of layered superconductors showing slab structure where superconducting domains are sandwiched by non-superconducting regions. We found that Hc2H_{c2} may be strongly enhanced by such fluctuations.Comment: to appear in Journal of Physics: Condensed Matte

    Double sign reversal of the vortex Hall effect in YBa2Cu3O7-delta thin films in the strong pinning limit of low magnetic fields

    Full text link
    Measurements of the Hall effect and the resistivity in twinned YBa2Cu3O7-delta thin films in magnetic fields B oriented parallel to the crystallographic c-axis and to the twin boundaries reveal a double sign reversal of the Hall coefficient for B below 1 T. In high transport current densities, or with B tilted off the twin boundaries by 5 degrees, the second sign reversal vanishes. The power-law scaling of the Hall conductivity to the longitudinal conductivity in the mixed state is strongly modified in the regime of the second sign reversal. Our observations are interpreted as strong, disorder-type dependent vortex pinning and confirm that the Hall conductivity in high temperature superconductors is not independent of pinning.Comment: 4 pages, 4 figure

    Critical fluctuation conductivity in layered superconductors in strong electric field

    Full text link
    The paraconductivity, originating from critical superconducting order-parameter fluctuations in the vicinity of the critical temperature in a layered superconductor is calculated in the frame of the self-consistent Hartree approximation, for an arbitrarily strong electric field and zero magnetic field. The paraconductivity diverges less steep towards the critical temperature in the Hartree approximation than in the Gaussian one and it shows a distinctly enhanced variation with the electric field. Our results indicate that high electric fields can be effectively used to suppress order-parameter fluctuations in high-temperature superconductors.Comment: 11 pages, 2 figures, to be published in Phys. Rev.

    Nanomaterials for the cleaning and pH adjustment of vegetable tanned leather

    Get PDF
    Leather artifacts in historical collections and archives are often contaminated by physical changes such as soiling, which alter their appearance and readability, and by chemical changes which occur on ageing and give rise to excessive proportion of acids that promote hydrolysis of collagen, eventually leading to gelatinization and loss of mechanical properties. However, both cleaning and pH adjustment of vegetable tanned leather pose a great challenge for conservators, owing to the sensitivity of these materials to the action of solvents, especially water-based formulations and alkaline chemicals. In this study the cleaning of historical leather samples was optimized by confining an oil-in-water (o/w) nanostructured fluid in a highly retentive chemical hydrogel, which allows the controlled release of the cleaning fluid on sensitive surfaces. The chemical gel exhibits optimal viscoelasticity, which facilitates its removal after the application without leaving residues on the object. Nanoparticles of calcium hydroxide and lactate, dispersed in 2-propanol, were used to adjust the pH up to the natural value of leather, preventing too high alkalinity which causes swelling of fibers and denaturation of the collagen. The treated samples were characterized using Scanning Electron Microscopy (FE SEM), controlled environment dynamic mechanical analysis (DMA-RH), and infrared spectroscopy (ATR-FTIR). The analytical assessment validated the use of tools derived from colloid and materials science for the preservation of collagen-based artifacts

    Heterogeneous relaxation dynamics of nano-confined salol probed by DMA

    No full text
    We present novel low-frequency (0.1 Hz–\hbox{--} 50 Hz) measurements of the complex elastic susceptibility of the glass-forming liquid salol confined to nanoporous Vycor glass. Our data can be perfectly interpreted with the assumption of a radial distribution of Vogel-Fulcher temperatures T0(r)T_{0}(r) inside the pores, resulting from an increase of the molecular relaxation time with decreasing distance from the rough pore surface as recently found by computer simulations (Scheidler et al., Europhys. Lett. 59, 701 (2002)). The results show for the first time, that the dynamic elastic response is extremely sensitive for separating confinement-induced acceleration effects of the molecular dynamics and surface-induced slowing-down due to rough pore interfaces
    corecore