40 research outputs found

    A ‘criminal personas’ approach to countering criminal creativity

    Get PDF
    This paper describes a pilot study of a ‘criminal personas’ approach to countering criminal creativity. The value of the personas approach has been assessed by comparing the identification of criminal opportunity, through ‘traditional’ brainstorming and then through ‘criminal personas’ brainstorming The method involved brainstorm sessions with Computer Forensics Practitioners and with Product Designers, where they were required to generate criminal scenarios, select the most serious criminal opportunities, and propose means of countering them. The findings indicated that there was merit in further research in the development and application of the ‘criminal personas’ approach. The generation of criminal opportunity ideas and proposal of counter criminal solutions were both greater when the brainstorm approach involved the group responding through their given criminal personas

    The observation of silicon nanocrystals in siloxene

    Get PDF
    This article discusses the observation of silicon nanocrystals in siloxene using high resolution transmission electron microscopy

    Association analysis of PON2 genetic variants with serum paraoxonase activity and systemic lupus erythematosus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low serum paraoxonase (PON) activity is associated with the risk of coronary artery disease, diabetes and systemic lupus erythematosus (SLE). Our prior studies have shown that the <it>PON1</it>/rs662 (p.Gln192Arg), <it>PON1</it>/rs854560 (p.Leu55Met), <it>PON3</it>/rs17884563 and <it>PON3</it>/rs740264 SNPs (single nucleotide polymorphisms) significantly affect serum PON activity. Since <it>PON1, PON2 </it>and <it>PON3 </it>share high degree of structural and functional properties, in this study, we examined the role of <it>PON2 </it>genetic variation on serum PON activity, risk of SLE and SLE-related clinical manifestations in a Caucasian case-control sample.</p> <p>Methods</p> <p><it>PON2 </it>SNPs were selected from HapMap and SeattleSNPs databases by including at least one tagSNP from each bin defined in these resources. A total of nineteen <it>PON2 </it>SNPs were successfully genotyped in 411 SLE cases and 511 healthy controls using pyrosequencing, restriction fragment length polymorphism (RFLP) or TaqMan allelic discrimination methods.</p> <p>Results</p> <p>Our pair-wise linkage disequilibrium (LD) analysis, using an <it>r</it><sup><it>2 </it></sup>cutoff of 0.7, identified 14 <it>PON2 </it>tagSNPs that captured all 19 <it>PON2 </it>variants in our sample, 12 of which were not in high LD with known <it>PON1 </it>and <it>PON3 </it>SNP modifiers of PON activity. Stepwise regression analysis of PON activity, including the known modifiers, identified five <it>PON2 </it>SNPs [rs6954345 (p.Ser311Cys), rs13306702, rs987539, rs11982486, and rs4729189; <it>P </it>= 0.005 to 2.1 × 10<sup>-6</sup>] that were significantly associated with PON activity. We found no association of <it>PON2 </it>SNPs with SLE risk but modest associations were observed with lupus nephritis (rs11981433, rs17876205, rs17876183) and immunologic disorder (rs11981433) in SLE patients (<it>P </it>= 0.013 to 0.042).</p> <p>Conclusions</p> <p>Our data indicate that <it>PON2 </it>genetic variants significantly affect variation in serum PON activity and have modest effects on risk of lupus nephritis and SLE-related immunologic disorder.</p

    Experimenting a Layer 2-based Approach to Internet Connectivity for Ad Hoc Networks

    No full text
    A prerequisite for the mass-market deployment of multihop ad hoc technologies is the capability of integrating with existing wired infrastructure networks. However, current solutions to support connectivity between ad hoc networks and the Internet are based on complex mechanisms, such as Mobile-IP and IP tunnelling. In this paper we propose a lightweight solution based on simple Layer-2 mechanisms. Experiments carried out in a real test-bed confirm the validity and efficiency of our approach
    corecore