3,337 research outputs found

    Low-energy Antiproton Interaction with Helium

    Get PDF
    An ab initio potential for the interaction of the neutral helium atom with antiprotons and protons is calculated using the Born-Oppenheimer approximation. Using this potential, the annihilation cross section for antiprotons in the energy range 0.01 microvolt to 1 eV is calculated.Comment: 13 pages, 7 figures, LaTe

    Properties and occurrence rates of KeplerKepler exoplanet candidates as a function of host star metallicity from the DR25 catalog

    Get PDF
    Correlations between the occurrence rate of exoplanets and their host star properties provide important clues about the planet formation processes. We studied the dependence of the observed properties of exoplanets (radius, mass, and orbital period) as a function of their host star metallicity. We analyzed the planetary radii and orbital periods of over 2800 KeplerKepler candidates from the latest KeplerKepler data release DR25 (Q1-Q17) with revised planetary radii based on GaiaGaia~DR2 as a function of host star metallicity (from the Q1-Q17 (DR25) stellar and planet catalog). With a much larger sample and improved radius measurements, we are able to reconfirm previous results in the literature. We show that the average metallicity of the host star increases as the radius of the planet increases. We demonstrate this by first calculating the average host star metallicity for different radius bins and then supplementing these results by calculating the occurrence rate as a function of planetary radius and host star metallicity. We find a similar trend between host star metallicity and planet mass: the average host star metallicity increases with increasing planet mass. This trend, however, reverses for masses >4.0MJ> 4.0\, M_\mathrm{J}: host star metallicity drops with increasing planetary mass. We further examined the correlation between the host star metallicity and the orbital period of the planet. We find that for planets with orbital periods less than 10 days, the average metallicity of the host star is higher than that for planets with periods greater than 10 days.Comment: 14 pages, 13 Figures, Accepted for publication in The Astronomical Journa

    Gas permeation through a polymer network

    Full text link
    We study the diffusion of gas molecules through a two-dimensional network of polymers with the help of Monte Carlo simulations. The polymers are modeled as non-interacting random walks on the bonds of a two-dimensional square lattice, while the gas particles occupy the lattice cells. When a particle attempts to jump to a nearest-neighbor empty cell, it has to overcome an energy barrier which is determined by the number of polymer segments on the bond separating the two cells. We investigate the gas current JJ as a function of the mean segment density ρ\rho, the polymer length \ell and the probability qmq^{m} for hopping across mm segments. Whereas JJ decreases monotonically with ρ\rho for fixed \ell, its behavior for fixed ρ\rho and increasing \ell depends strongly on qq. For small, non-zero qq, JJ appears to increase slowly with \ell. In contrast, for q=0q=0, it is dominated by the underlying percolation problem and can be non-monotonic. We provide heuristic arguments to put these interesting phenomena into context.Comment: Dedicated to Lothar Schaefer on the occasion of his 60th birthday. 11 pages, 3 figure

    Power Generation System by using Piezo Sensors for Multiple Applications

    Get PDF
    Generally there is huge demand for power production. So going for alternative energy source is the best way to harvest electricity. We have proposed that piezo sensors produce electricity when pressure is applied on them. These sensors are then connected in series and parallel combination and placed in a tile like structure. This tile can be used in any place wherever pressure is applied. The harvested power can be stored in a battery and used for AC or DC loads and also voltage generated by a single tile can be displayed on display devices like LCD located at a different location using zigbee technology for smart analysis. DOI: 10.17762/ijritcc2321-8169.16041

    Local-density approximation for exchange energy functional in excited-state density functional theory

    Full text link
    An exchange energy functional is proposed and tested for obtaining a class of excited-state energies using density functional formalism. The functional is the excited-state counterpart of the local-density approximation functional for the ground state. It takes care of the state dependence of the energy functional and leads to highly accurate excitation energies

    Molecular detection of Wolbachia endosymbiont in reptiles and their ectoparasites

    Get PDF
    Wolbachia, a maternally transmitted Gram-negative endosymbiont of onchocercid nematodes and arthropods, has a role in the biology of their host; thus it has been exploited for the filariasis treatment in humans. To assess the presence and prevalence of this endosymbiont in reptiles and their ectoparasites, blood and tail tissue as well as ticks and mites collected from them were molecularly screened for Wolbachia DNA using two sets of primers targeting partial 16S rRNA and Wolbachia surface protein (wsp) genes. Positive samples were screened for the partial 12S rRNA and cytochrome c oxidase subunit 1 (cox1) genes for filarioids. Of the different species of lizards (Podarcis siculus, Podarcis muralis and Lacerta bilineata) and snakes (Elaphe quatuorlineata and Boa constrictor constrictor) screened from three collection sites, only P. siculus scored positive for Wolbachia 16S rRNA. Among ectoparasites collected from reptiles (Ixodes ricinus ticks and Neotrombicula autumnalis, Ophionyssus sauracum and Ophionyssus natricis mites), I. ricinus (n = 4; 2.8%; 95% CI, 0.9–7) from P. siculus, N. autumnalis (n = 2 each; 2.8%; 95% CI, 0.9–6.5) from P. siculus and P. muralis and O. natricis (n = 1; 14.3%; 95% CI, 0.7–55.4) from Boa constrictor constrictor scored positive for Wolbachia DNA. None of the positive Wolbachia samples scored positive for filarioids. This represents the first report of Wolbachia in reptilian hosts and their ectoparasites, which follows a single identification in the intestinal cells of a filarioid associated with a gecko. This data could contribute to better understand the reptile filarioid-Wolbachia association and to unveil the evolutionary pattern of Wolbachia in its filarial host

    Exploring Foundations of Time-Independent Density Functional Theory for Excited-States

    Full text link
    Based on the work of Gorling and that of Levy and Nagy, density-functional formalism for many Fermionic excited-states is explored through a careful and rigorous analysis of the excited-state density to external potential mapping. It is shown that the knowledge of the ground-state density is a must to fix the mapping from an excited-state density to the external potential. This is the excited-state counterpart of the Hohenberg-Kohn theorem, where instead of the ground-state density the density of the excited-state gives the true many-body wavefunctions of the system. Further, the excited-state Kohn-Sham system is defined by comparing it's non-interacting kinetic energy with the true kinetic energy. The theory is demonstrated by studying a large number of atomic systems.Comment: submitted to J. Chem. Phy

    On characteristic initial data for a star orbiting a black hole

    Full text link
    We take further steps in the development of the characteristic approach to enable handling the physical problem of a compact self-gravitating object, such as a neutron star, in close orbit around a black hole. We examine different options for setting the initial data for this problem and, in order to shed light on their physical relevance, we carry out short time evolution of this data. To this end we express the matter part of the characteristic gravity code so that the hydrodynamics are in conservation form. The resulting gravity plus matter relativity code provides a starting point for more refined future efforts at longer term evolution. In the present work we find that, independently of the details of the initial gravitational data, the system quickly flushes out spurious gravitational radiation and relaxes to a quasi-equilibrium state with an approximate helical symmetry corresponding to the circular orbit of the star.Comment: 20 pages, 10 figure
    corecore