11 research outputs found

    Study of Healthcare Personnel with Influenza and other Respiratory Viruses in Israel (SHIRI): study protocol

    Full text link
    Abstract Background The Study of Healthcare Personnel with Influenza and other Respiratory Viruses in Israel (SHIRI) prospectively follows a cohort of healthcare personnel (HCP) in two hospitals in Israel. SHIRI will describe the frequency of influenza virus infections among HCP, identify predictors of vaccine acceptance, examine how repeated influenza vaccination may modify immunogenicity, and evaluate influenza vaccine effectiveness in preventing influenza illness and missed work. Methods Cohort enrollment began in October, 2016; a second year of the study and a second wave of cohort enrollment began in June 2017. The study will run for at least 3 years and will follow approximately 2000 HCP (who are both employees and members of Clalit Health Services [CHS]) with routine direct patient contact. Eligible HCP are recruited using a stratified sampling strategy. After informed consent, participants complete a brief enrollment survey with questions about occupational responsibilities and knowledge, attitudes, and practices about influenza vaccines. Blood samples are collected at enrollment and at the end of influenza season; HCP who choose to be vaccinated contribute additional blood one month after vaccination. During the influenza season, participants receive twice-weekly short message service (SMS) messages asking them if they have acute respiratory illness or febrile illness (ARFI) symptoms. Ill participants receive follow-up SMS messages to confirm illness symptoms and duration and are asked to self-collect a nasal swab. Information on socio-economic characteristics, current and past medical conditions, medical care utilization and vaccination history is extracted from the CHS database. Information about missed work due to illness is obtained by self-report and from employee records. Respiratory specimens from self-collected nasal swabs are tested for influenza A and B viruses, respiratory syncytial virus, human metapneumovirus, and coronaviruses using validated multiplex quantitative real-time reverse transcription polymerase chain reaction assays. The hemagglutination inhibition assay will be used to detect the presence of neutralizing influenza antibodies in serum. Discussion SHIRI will expand our knowledge of the burden of respiratory viral infections among HCP and the effectiveness of current and repeated annual influenza vaccination in preventing influenza illness, medical utilization, and missed workdays among HCP who are in direct contact with patients. Trial registration NCT03331991 . Registered on November 6, 2017.https://deepblue.lib.umich.edu/bitstream/2027.42/146186/1/12879_2018_Article_3444.pd

    Antimicrobial Efficacy

    No full text
    This annual review is intended to be a reference to describe the potential in vivo activity of various antimicrobial agents when the identity of the infecting organism is known. Because the early initiation of appropriate therapy has been noted to improve clinical outcomes in patients with serious infections, empiric therapy frequently demands the use of a broad-spectrum antimicrobial agent until the specific infecting bacteria have been identified

    Efficacy of interferon beta-1a plus remdesivir compared with remdesivir alone in hospitalised adults with COVID-19: a double-bind, randomised, placebo-controlled, phase 3 trial

    No full text
    BACKGROUND: Functional impairment of interferon, a natural antiviral component of the immune system, is associated with the pathogenesis and severity of COVID-19. We aimed to compare the efficacy of interferon beta-1a in combination with remdesivir compared with remdesivir alone in hospitalised patients with COVID-19. METHODS: We did a double-blind, randomised, placebo-controlled trial at 63 hospitals across five countries (Japan, Mexico, Singapore, South Korea, and the USA). Eligible patients were hospitalised adults (aged ≥18 years) with SARS-CoV-2 infection, as confirmed by a positive RT-PCR test, and who met one of the following criteria suggestive of lower respiratory tract infection: the presence of radiographic infiltrates on imaging, a peripheral oxygen saturation on room air of 94% or less, or requiring supplemental oxygen. Patients were excluded if they had either an alanine aminotransferase or an aspartate aminotransferase concentration more than five times the upper limit of normal; had impaired renal function; were allergic to the study product; were pregnant or breast feeding; were already on mechanical ventilation; or were anticipating discharge from the hospital or transfer to another hospital within 72 h of enrolment. Patients were randomly assigned (1:1) to receive intravenous remdesivir as a 200 mg loading dose on day 1 followed by a 100 mg maintenance dose administered daily for up to 9 days and up to four doses of either 44 μg interferon beta-1a (interferon beta-1a group plus remdesivir group) or placebo (placebo plus remdesivir group) administered subcutaneously every other day. Randomisation was stratified by study site and disease severity at enrolment. Patients, investigators, and site staff were masked to interferon beta-1a and placebo treatment; remdesivir treatment was given to all patients without masking. The primary outcome was time to recovery, defined as the first day that a patient attained a category 1, 2, or 3 score on the eight-category ordinal scale within 28 days, assessed in the modified intention-to-treat population, defined as all randomised patients who were classified according to actual clinical severity. Safety was assessed in the as-treated population, defined as all patients who received at least one dose of the assigned treatment. This trial is registered with ClinicalTrials.gov, NCT04492475. FINDINGS: Between Aug 5, 2020, and Nov 11, 2020, 969 patients were enrolled and randomly assigned to the interferon beta-1a plus remdesivir group (n=487) or to the placebo plus remdesivir group (n=482). The mean duration of symptoms before enrolment was 8·7 days (SD 4·4) in the interferon beta-1a plus remdesivir group and 8·5 days (SD 4·3) days in the placebo plus remdesivir group. Patients in both groups had a time to recovery of 5 days (95% CI not estimable) (rate ratio of interferon beta-1a plus remdesivir group vs placebo plus remdesivir 0·99 [95% CI 0·87-1·13]; p=0·88). The Kaplan-Meier estimate of mortality at 28 days was 5% (95% CI 3-7%) in the interferon beta-1a plus remdesivir group and 3% (2-6%) in the placebo plus remdesivir group (hazard ratio 1·33 [95% CI 0·69-2·55]; p=0·39). Patients who did not require high-flow oxygen at baseline were more likely to have at least one related adverse event in the interferon beta-1a plus remdesivir group (33 [7%] of 442 patients) than in the placebo plus remdesivir group (15 [3%] of 435). In patients who required high-flow oxygen at baseline, 24 (69%) of 35 had an adverse event and 21 (60%) had a serious adverse event in the interferon beta-1a plus remdesivir group compared with 13 (39%) of 33 who had an adverse event and eight (24%) who had a serious adverse event in the placebo plus remdesivir group. INTERPRETATION: Interferon beta-1a plus remdesivir was not superior to remdesivir alone in hospitalised patients with COVID-19 pneumonia. Patients who required high-flow oxygen at baseline had worse outcomes after treatment with interferon beta-1a compared with those given placebo. FUNDING: The National Institute of Allergy and Infectious Diseases (USA)

    Passive Immunity Trial for Our Nation (PassITON): Study Protocol for a Randomized Placebo-Control Clinical Trial Evaluating COVID-19 Convalescent Plasma in Hospitalized Adults

    No full text
    Background: Convalescent plasma is being used widely as a treatment for coronavirus disease 2019 (COVID-19). However, the clinical efficacy of COVID-19 convalescent plasma is unclear. Methods: The Pass ive I mmunity T rial for O ur N ation (PassITON), is a multicenter, placebo-controlled, blinded, randomized clinical trial being conducted in the United States to provide high-quality evidence on the efficacy of COVID-19 convalescent plasma as a treatment for adults hospitalized with symptomatic disease. Adults hospitalized with COVID-19 with respiratory symptoms for less than 14 days are eligible. Enrolled patients are randomized in a 1:1 ratio to 1 unit (200-399 mL) of COVID-19 convalescent plasma that has demonstrated neutralizing function using a SARS-CoV-2 chimeric virus neutralization assay. Study treatments are administered in a blinded fashion and patients are followed for 28 days. The primary outcome is clinical status 14 days after study treatment as measured on a 7-category ordinal scale assessing mortality, respiratory support, and return to normal activities of daily living. Key secondary outcomes include mortality and oxygen-free days. The trial is projected to enroll 1000 patients and is designed to detect an odds ratio ≤ 0.73 for the primary outcome. Discussion: This trial will provide the most robust data available to date on the efficacy of COVID-19 convalescent plasma for the treatment of adults hospitalized with acute moderate to severe COVID-19. These data will be useful to guide the treatment of COVID-19 patients in the current pandemic and for informing decisions about whether developing a standardized infrastructure for collecting and disseminating convalescent plasma to prepare for future viral pandemics is indicated. Trial Registration: ClinicalTrials.gov: NCT04362176. Date of trial registration: April 24, 2020, https://clinicaltrials.gov/ct2/show/NCT04362176

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore