165 research outputs found

    Frequency Modulation of Spin-Transfer Oscillators

    Full text link
    Spin-polarized dc electric current flowing into a magnetic layer can induce precession of the magnetization at a frequency that depends on current. We show that addition of an ac current to this dc bias current results in a frequency modulated (FM) spectral output, generating sidebands spaced at the modulation frequency. The sideband amplitudes and shift of the center frequency with drive amplitude are in good agreement with a nonlinear FM model that takes into account the nonlinear frequency-current relation generally induced by spin transfer. Single-domain simulations show that ac current modulates the cone angle of the magnetization precession, in turn modulating the frequency via the demagnetizing field. These results are promising for communications and signal processing applications of spin-transfer oscillators.Comment: 13 pages, 3 Figure

    Non-white frequency noise in spin torque oscillators and its effect on spectral linewidth

    Full text link
    We measure the power spectral density of frequency fluctuations in nanocontact spin torque oscillators over time scales up to 50 ms. We use a mixer to convert oscillator signals ranging from 10 GHz to 40 GHz into a band near 70 MHz before digitizing the time domain waveform. We analyze the waveform using both zero crossing time stamps and a sliding Fourier transform, discuss the different limitations and advantages of these two methods, and combine them to obtain a frequency noise spectrum spanning more than five decades of Fourier frequency ff. For devices having a free layer consisting of either a single Ni80_{\text{}80}Fe20_{\text{}20} layer or a Co/Ni multilayer we find a frequency noise spectrum that is white at large ff and varies as \emph{1/f1/f} at small ff. The crossover frequency ranges from \approx\unit[10^{4}]{Hz} to \approx\unit[10^{6}]{Hz} and the 1/f1/f component is stronger in the multilayer devices. Through actual and simulated spectrum analyzer measurements, we show that 1/f1/f frequency noise causes both broadening and a change in shape of the oscillator's spectral line as measurement time increases. Our results indicate that the long term stability of spin torque oscillators cannot be accurately predicted from models based on thermal (white) noise sources

    Theory of Magnetodynamics Induced by Spin Torque in Perpendicularly Magnetized Thin Films

    Full text link
    A nonlinear model of spin wave excitation using a point contact in a thin ferromagnetic film is introduced. Large-amplitude magnetic solitary waves are computed, which help explain recent spin-torque experiments. Numerical simulations of the fully nonlinear model predict excitation frequencies in excess of 0.2 THz for contact diameters smaller than 6 nm. Simulations also predict a saturation and red shift of the frequency at currents large enough to invert the magnetization under the point contact. The theory is approximated by a cubic complex Ginzburg-Landau type equation. The mode's nonlinear frequency shift is found by use of perturbation techniques, whose results agree with those of direct numerical simulations.Comment: 5 pages, 4 figures, submitted to PR

    A naturally occuring insertion of a single amino acid rewires transcriptional regulation by glucocorticoid receptor isoforms

    No full text
    In addition to guiding proteins to defined genomic loci, DNA can act as an allosteric ligand that influences protein structure and activity. Here we compared genome-wide binding, transcriptional regulation, and, using NMR, the conformation of two glucocorticoid receptor (GR) isoforms that differ by a single amino acid insertion in the lever arm, a domain that adopts DNA sequence-specific conformations. We show that these isoforms differentially regulate gene expression levels through two mechanisms: differential DNA binding and altered communication between GR domains. Our studies suggest a versatile role for DNA in both modulating GR activity and also in directing the use of GR isoforms. We propose that the lever arm is a "fulcrum" for bidirectional allosteric signaling, conferring conformational changes in the DNA reading head that influence DNA sequence selectivity, as well as conferring changes in the dimerization domain that connect functionally with remote regulatory surfaces, thereby influencing which genes are regulated and the magnitude of their regulation

    Experience of primary care for people with HIV: a mixed-method analysis

    Get PDF
    Background Advances in treatment have transformed HIV into a long-term condition (LTC), presenting fresh challenges for health services, HIV specialists and general practitioners (GPs). Aim To explore the experience of people living with HIV (PLHIV) regarding using their GPs. Design and setting A mixed-method analysis using data from two sources: a nationally-representative survey of PLHIV and a qualitative study with London-based PLHIV. Methods Univariate logistic regression for quantitative data and Framework analysis for qualitative data. Results The survey had 4,422 participants; the qualitative study included 52 participants. In both studies, GP registration and HIV status disclosure were high. Similar to general population trends, recent GP use was associated with poor self-rated health status, co-morbidities, older age and lower socioeconomic status. Two-thirds reported a good experience with GPs; a lower proportion felt comfortable asking HIV-related questions. Actual or perceived HIV stigma were consistently associated with poor satisfaction. In the interviews, participants with additional LTCs valued sensitive and consistent support from GPs. Some anticipated, and sometimes experienced, problems relating to HIV status, GPs’ limited experience and time to manage their complex needs. Sometimes they took their own initiatives to facilitate coordination and communication. For PLHIV, a ‘good’ GP offered continuity and took time to know and accept them without judgement. Conclusion We suggest clarification of roles and provision of relevant support to build confidence in GPs and primary care staff to care for PLHIV. As PLHIV population ages, there is a strong need to develop trusting patient/GP relationships and HIV-friendly GP practices

    Current-Driven Microwave Dynamics in Magnetic Point Contacts as a Function of Applied Field Angle

    Full text link
    We have measured microwave frequency, current-driven magnetization dynamics in point contacts made to Co90Fe10/Cu/ Ni80Fe20 spin valves as a function of applied field strength and angle relative to the film plane. As the field direction is varied from parallel to nearly perpendicular, the device power output increases by roughly two orders of magnitude while the frequencies of the excitations decrease. For intermediate angles the excited frequency does not monotonically vary with applied current and also exhibits abrupt, current-dependent jumps. For certain ranges of current, and applied field strength and direction, the excitation linewidths decrease to a few megahertz, leading to quality factors over 18,000

    Time domain measurement of phase noise in a spin torque oscillator

    Full text link
    We measure oscillator phase from the zero crossings of the voltage vs. time waveform of a spin torque nanocontact oscillating in a vortex mode. The power spectrum of the phase noise varies with Fourier frequency ff as 1/f21/f^2, consistent with frequency fluctuations driven by a thermal source. The linewidth implied by phase noise alone is about 70 % of that measured using a spectrum analyzer. A phase-locked loop reduces the phase noise for frequencies within its 3 MHz bandwidth.Comment: 6 pages, 5 figures, supplementary material. Submitted to {Appl. Phys. Lett.

    Direct-Current Induced Dynamics in Co90Fe10/Ni80Fe20 Point Contacts

    Full text link
    We have directly measured coherent high-frequency magnetization dynamics in ferromagnet films induced by a spin-polarized DC current. The precession frequency can be tuned over a range of several gigahertz, by varying the applied current. The frequencies of excitation also vary with applied field, resulting in a microwave oscillator that can be tuned from below 5 GHz to above 40 GHz. This novel method of inducing high-frequency dynamics yields oscillations having quality factors from 200 to 800. We compare our results with those from single-domain simulations of current-induced dynamics
    • …
    corecore