40 research outputs found

    Volcanic cloud detection using Sentinel-3 satellite data by means of neural networks: the Raikoke 2019 eruption test case

    Get PDF
    The accurate automatic volcanic cloud detection by means of satellite data is a challenging task and of great concern for both scientific community and stakeholder due to the well-known issues generated by a strong eruption event in relation to aviation safety and health impact. In this context, machine learning techniques applied to recent spaceborne sensors acquired data have shown promising results in the last years. This work focuses on the application of a neural network based model to Sentinel-3 SLSTR (Sea and Land Surface Temperature Radiometer) daytime products in order to detect volcanic ash plumes generated by the 2019 Raikoke eruption. The classification of the clouds and of the other surfaces composing the scene is also carried out. The neural network has been trained with MODIS (MODerate resolution Imaging Spectroradiometer) daytime imagery collected during the 2010 Eyjafjallaj&ouml;kull eruption. The similar acquisition channels of SLSTR and MODIS sensors and the events comparable latitudes foster the robustness of the approach, which allows overcoming the lack in SLSTR products collected in previous mid-high latitude eruptions. The results show that the neural network model is able to detect volcanic ash with good accuracy if compared with RGB visual inspection and BTD (Brightness Temperature Difference) procedure. Moreover, the comparison between the ash cloud obtained by neural network and a plume mask manually generated for the specific SLSTR considered images, shows significant agreement. Thus, the proposed approach allows an automatic image classification during eruption events, which it is also considerably faster than time-consuming manually algorithms (e.g. find the best BTD product-specific threshold). Furthermore, the whole image classification indicates an overall reliability of the algorithm, in particular for meteo-clouds recognition and discrimination from volcanic clouds. Finally, the results show that the NN developed for the SLSTR nadir view is able to properly classify also the SLSTR oblique view images.</p

    Volcanic ash detection and retrievals using MODIS data by means of neural networks

    Get PDF
    Volcanic ash clouds detection and retrieval represent a key issue for aviation safety due to the harming effects on aircraft. A lesson learned from the recent Eyjafjallajokull eruption is the need to obtain accurate and reliable retrievals on a real time basis. &lt;br&gt;&lt;br&gt; In this work we have developed a fast and accurate Neural Network (NN) approach to detect and retrieve volcanic ash cloud properties from the Moderate Resolution Imaging Spectroradiometer (MODIS) data in the Thermal InfraRed (TIR) spectral range. Some measurements collected during the 2001, 2002 and 2006 Mt. Etna volcano eruptions have been considered as test cases. &lt;br&gt;&lt;br&gt; The ash detection and retrievals obtained from the Brightness Temperature Difference (BTD) algorithm are used as training for the NN procedure that consists in two separate steps: ash detection and ash mass retrieval. The ash detection is reduced to a classification problem by identifying two classes: "ashy" and "non-ashy" pixels in the MODIS images. Then the ash mass is estimated by means of the NN, replicating the BTD-based model performances. A segmentation procedure has also been tested to remove the false ash pixels detection induced by the presence of high meteorological clouds. The segmentation procedure shows a clear advantage in terms of classification accuracy: the main drawback is the loss of information on ash clouds distal part. &lt;br&gt;&lt;br&gt; The results obtained are very encouraging; indeed the ash detection accuracy is greater than 90%, while a mean RMSE equal to 0.365 t km&lt;sup&gt;−2&lt;/sup&gt; has been obtained for the ash mass retrieval. Moreover, the NN quickness in results delivering makes the procedure extremely attractive in all the cases when the rapid response time of the system is a mandatory requirement

    Neural network multispectral satellite images classification of volcanic ash plumes in a cloudy scenario

    Get PDF
    This work shows the potential use of neural networks in the characterization of eruptive events monitored by satellite, through fast and automatic classification of multispectral images. The algorithm has been developed for the MODIS instrument and can easily be extended to other similar sensors. Six classes have been defined paying particular attention to image regions that represent the different surfaces that could possibly be found under volcanic ash clouds. Complex cloudy scenarios composed by images collected during the Icelandic eruptions of the Eyjafjallajökull (2010) and Grimsvötn (2011) volcanoes have been considered as test cases. A sensitivity analysis on the MODIS TIR and VIS channels has been performed to optimize the algorithm. The neural network has been trained with the first image of the dataset, while the remaining data have been considered as independent validation sets. Finally, the neural network classifier’s results have been compared with maps classified with several interactive procedures performed in a consolidated operational framework. This comparison shows that the automatic methodology proposed achieves a very promising performance, showing an overall accuracy greater than 84%, for the Eyjafjallajökull event, and equal to 74% for the Grimsvötn event

    Volcanic ash retrieval from IR multispectral measurements by means of Neural Networks

    Get PDF
    The lesson learned from the recent Icelandic Eyjafjallajokull volcanic eruption is the need to obtain accurate near real time retrievals in order to sample the phenomenon evolution. In particular, because of the harming effects of fine volcanic ash particles on aircrafts, the real time tracking of volcanic clouds is a key issue for aviation safety. The current mostly utilized procedure for the ash retrievals is based on the Brightness Temperature Difference (BTD) algorithm, using the 11 and 12 micron channels measurements and radiative transfer model computation. This latter requires many input parameters and is time consuming, preventing the utilization during the crisis phases. In this work a fast and accurate Neural Network (NN) approach has been developed to detect and retrieve volcanic ash cloud properties using multispectral IR measurements. The exploited data come from the Moderate Resolution Imaging Spectroradiometer (MODIS) acquired over Mt. Etna volcano during the 2001, 2002 and 2006 eruptive events. The procedure consists in two separate steps that uses the three MODIS channels 28, 31 and 32: the detection and the ash retrievals. The detection is reduced to a classification problem. In this context several classes can be individuated, such as free sea surface, meteorological clouds, and ash plume. To maintain the solution of the problem as easy as possible we have simplified the scenario identifying only two classes on the MODIS images: 'ash' and 'no ash' pixels. This approach is coherent with the philosophy of this work in which the time passed to obtain the result is a stringent factor. For the ash mass retrieval, the trained network replicates the model. In fact, in order to have a network able to learn a behavior and to represent it through a functional approximation, it is necessary to provide appropriate information by an ensemble of examples. These latter can be obtained from a model if a direct measure is not available. In this work the results obtained with the BTD procedure have been considered. The results obtained from the entire procedure are encouraging, indeed the confusion matrix for the test set has an accuracy greater than 90%. Moreover the ash mass retrieval shows a good agreement with that achieved by BTD procedure

    DInSAR techniques for studying the October 23, 2011, Van earthquake (Turkey), and its relationship with neighboring structures

    Get PDF
    In October 2011 a strong earthquake hit the Van province, Eastern Turkey. Few days later (November 9th) an aftershock occurred few km southward. Finally in November 1976 another mainshock took place north of Van along the Caldiran fault. We have investigated the possible relations between 2011 mainshock and aftershock and the link with the 1976 earthquake. In order to complete the work SAR interferometry has been applied to measure surface displacements, while the fault geometries of the mainshock have been retrieved by a novel Neural Network approach. Moreover the CFF has been calculated to evaluate the role of 1976 earthquake in promoting the 2011 mainshock and, later on, the role of this latter respect to the aftershock in November 9th, 201

    Volcanic cloud detection using Sentinel-3 satellite data by means of neural networks: the Raikoke 2019 eruption test case

    Get PDF
    Accurate automatic volcanic cloud detection by means of satellite data is a challenging task and is of great concern for both the scientific community and aviation stakeholders due to well-known issues generated by strong eruption events in relation to aviation safety and health impacts. In this context, machine learning techniques applied to satellite data acquired from recent spaceborne sensors have shown promising results in the last few years. This work focuses on the application of a neural-network-based model to Sentinel-3 SLSTR (Sea and Land Surface Temperature Radiometer) daytime products in order to detect volcanic ash plumes generated by the 2019 Raikoke eruption. A classification of meteorological clouds and of other surfaces comprising the scene is also carried out. The neural network has been trained with MODIS (Moderate Resolution Imaging Spectroradiometer) daytime imagery collected during the 2010 Eyjafjallajökull eruption. The similar acquisition channels of SLSTR and MODIS sensors and the comparable latitudes of the eruptions permit an extension of the approach to SLSTR, thereby overcoming the lack in Sentinel-3 products collected in previous mid- to high-latitude eruptions. The results show that the neural network model is able to detect volcanic ash with good accuracy if compared to RGB visual inspection and BTD (brightness temperature difference) procedures. Moreover, the comparison between the ash cloud obtained by the neural network (NN) and a plume mask manually generated for the specific SLSTR images considered shows significant agreement, with an F-measure of around 0.7. Thus, the proposed approach allows for an automatic image classification during eruption events, and it is also considerably faster than time-consuming manual algorithms. Furthermore, the whole image classification indicates the overall reliability of the algorithm, particularly for recognition and discrimination between volcanic clouds and other objects.</p

    A neural network sea-ice cloud classification algorithm for copernicus sentinel-3 sea and land surface temperature radiometer

    No full text
    A Neural Network approach to classify Sentinel-3 sea and land surface temperature radiometer (SLSTR) pixels over polar regions is presented. The proposed approach is based on a careful preliminary analysis aimed to simulate SLSTR observation by means of MODIS data. The latter have been considered because of the long available time series and the quality of cloud mask products. A large set of MODIS AQUA and TERRA products has been applied to develop the training set of the Neural Network classificator that has been tuned to discriminate clear ocean, clouds and sea-ice surfaces on the scene

    Neural networks and SAR Interferometry for the characterization of seismic events

    No full text
    corecore