90 research outputs found

    Photocarrier lifetime and transport in silicon supersaturated with sulfur

    No full text
    Doping of silicon-on-insulator layers with sulfur to concentrations far above equilibrium by ion implantation and pulsed laser melting can result in large concentration gradients. Photocarriers generated in and near the impurity gradient can separate into different coplanar transport layers, leading to enhanced photocarrier lifetimes in thin silicon-on-insulator films. The depth from which holes escape the heavily doped region places a lower limit on the minority carrier mobility-lifetime product of 10⁻⁞ cmÂČ/V for heavily sulfur dopedsilicon. We conclude that the cross-section for recombination through S impurities at this concentration is significantly reduced relative to isolated impurities.Research at Rensselaer was supported by the Army Research Office under Contract No. W911NF0910470 and by the NSF REU program at Rensselaer. Research at Harvard was supported by US Army ARDEC under Contract No. W15QKN-07-P-0092. D.R. was supported in part by a National Defense Science and Engineering Graduate fellowship

    The Five AhMTP1 Zinc Transporters Undergo Different Evolutionary Fates towards Adaptive Evolution to Zinc Tolerance in Arabidopsis halleri

    Get PDF
    Gene duplication is a major mechanism facilitating adaptation to changing environments. From recent genomic analyses, the acquisition of zinc hypertolerance and hyperaccumulation characters discriminating Arabidopsis halleri from its zinc sensitive/non-accumulator closest relatives Arabidopsis lyrata and Arabidopsis thaliana was proposed to rely on duplication of genes controlling zinc transport or zinc tolerance. Metal Tolerance Protein 1 (MTP1) is one of these genes. It encodes a Zn2+/H+ antiporter involved in cytoplasmic zinc detoxification and thus in zinc tolerance. MTP1 was proposed to be triplicated in A. halleri, while it is present in single copy in A. thaliana and A. lyrata. Two of the three AhMTP1 paralogues were shown to co-segregate with zinc tolerance in a BC1 progeny from a cross between A. halleri and A. lyrata. In this work, the MTP1 family was characterized at both the genomic and functional levels in A. halleri. Five MTP1 paralogues were found to be present in A. halleri, AhMTP1-A1, -A2, -B, -C, and -D. Interestingly, one of the two newly identified AhMTP1 paralogues was not fixed at least in one A. halleri population. All MTP1s were expressed, but transcript accumulation of the paralogues co-segregating with zinc tolerance in the A. halleri X A. lyrata BC1 progeny was markedly higher than that of the other paralogues. All MTP1s displayed the ability to functionally complement a Saccharomyces cerevisiĂŠ zinc hypersensitive mutant. However, the paralogue showing the least complementation of the yeast mutant phenotype was one of the paralogues co-segregating with zinc tolerance. From our results, the hypothesis that pentaplication of MTP1 could be a major basis of the zinc tolerance character in A. halleri is strongly counter-balanced by the fact that members of the MTP1 family are likely to experience different evolutionary fates, some of which not concurring to increase zinc tolerance

    Intraspecific variation of metal preference patterns for hyperaccumulation in Thlaspi caerulescens: evidence from binary metal exposures.

    Get PDF
    Metal preferences with regard to accumulation were compared between populations of the heavy metal hyperaccumulator Thlaspi caerulescens, originating from calamine, serpentine and non-metalliferous soils. Plants were exposed for 3 weeks to factorial combinations of concentrations of different metals in binary mixture in hydroponics. The nature and degree of the interactions varied significantly between populations. In the calamine, non-Cd/Ni-hyperaccumulating population, La Calamine, there were no one-sided or mutual antagonistic interactions among the metals with regard to their accumulation in the plant. In three other populations capable of Cd and Ni hyperaccumulation, from calamine, serpentine and non-metalliferous soil respectively, there were one-sided or mutual antagonistic interactions between Cd and Zn, Cd and Ni, and Ni and Zn, possibly resulting from competition for transporters involved in uptake or plant-internal transport. Significant synergistic interactions, probably resulting from regulation of transporter expression, were also found, particularly in the La Calamine population. All the populations seemed to express a more or less Zn-specific high-affinity system. The serpentine and the non-metallicolous populations seemed to posses low-affinity systems with a preference for Cd and Zn over Ni, one of which may be responsible for the Ni hyperaccumulation of the serpentine population in its natural environment. The calamine population from Ganges also seemed to express a strongly Cd-specific high-affinity system which is in part responsible for the Cd-hyperaccumulation phenotype exhibited by this population in its natural environment. © 2007 The Author(s)

    Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense (Halacsy)

    No full text

    Extended infrared photoresponse and gain in chalcogen-supersaturated silicon photodiodes

    Get PDF
    Highly supersaturated solid solutions of selenium or sulfur in silicon were formed by ion implantation followed by nanosecond pulsed laser melting. n[superscript +]p photodiodes fabricated from these materials exhibit gain (external quantum efficiency >3000%) at 12 V of reverse bias and substantial optoelectronic response to light of wavelengths as long as 1250 nm. The amount of gain and the strength of the extended response both decrease with decreasing magnitude of bias voltage, but >100% external quantum efficiency is observed even at 2 V of reverse bias. The behavior is inconsistent with our expectations for avalanche gain or photoconductive gain.Army Armament Research, Development, and Engineering Center (U.S.) (Contract W15QKN-07-P-0092)United States. Army Research Office (Grant W911NF-09-1-0470
    • 

    corecore