49 research outputs found

    Phototropin-mediated perception of light direction in leaves regulates blade flattening.

    Get PDF
    One conserved feature among angiosperms is the development of flat thin leaves. This developmental pattern optimizes light capture and gas exchange. The blue light (BL) receptors phototropins are required for leaf flattening, with the null phot1phot2 mutant showing curled leaves in Arabidopsis (Arabidopsis thaliana). However, key aspects of their function in leaf development remain unknown. Here, we performed a detailed spatiotemporal characterization of phototropin function in Arabidopsis leaves. We found that phototropins perceive light direction in the blade, and, similar to their role in hypocotyls, they control the spatial pattern of auxin signaling, possibly modulating auxin transport, to ultimately regulate cell expansion. Phototropin signaling components in the leaf partially differ from hypocotyls. Moreover, the light response on the upper and lower sides of the leaf blade suggests a partially distinct requirement of phototropin signaling components on each side. In particular, NON PHOTOTROPIC HYPOCOTYL 3 showed an adaxial-specific function. In addition, we show a prominent role of PHYTOCHROME KINASE SUBSTRATE 3 in leaf flattening. Among auxin transporters, PIN-FORMED 3,4,7 and AUXIN RESISTANT 1 (AUX1)/LIKE AUXIN RESISTANT 1 (LAX1) are required for the response while ABCB19 has a regulatory role. Overall, our results show that directional BL perception by phototropins is a key aspect of leaf development, integrating endogenous and exogenous signals

    Neighbor Detection Induces Organ-Specific Transcriptomes, Revealing Patterns Underlying Hypocotyl-Specific Growth.

    Get PDF
    In response to neighbor proximity, plants increase the growth of specific organs (e.g., hypocotyls) to enhance access to sunlight. Shade enhances the activity of Phytochrome Interacting Factors (PIFs) by releasing these bHLH transcription factors from phytochrome B-mediated inhibition. PIFs promote elongation by inducing auxin production in cotyledons. In order to elucidate spatiotemporal aspects of the neighbor proximity response, we separately analyzed gene expression patterns in the major light-sensing organ (cotyledons) and in rapidly elongating hypocotyls of Arabidopsis thaliana PIFs initiate transcriptional reprogramming in both organs within 15 min, comprising regulated expression of several early auxin response genes. This suggests that hypocotyl growth is elicited by both local and distal auxin signals. We show that cotyledon-derived auxin is both necessary and sufficient to initiate hypocotyl growth, but we also provide evidence for the functional importance of the local PIF-induced response. With time, the transcriptional response diverges increasingly between organs. We identify genes whose differential expression may underlie organ-specific elongation. Finally, we uncover a growth promotion gene expression signature shared between different developmentally regulated growth processes and responses to the environment in different organs

    Plasma membrane Hâș -ATPase regulation is required for auxin gradient formation preceding phototropic growth.

    Get PDF
    Phototropism is a growth response allowing plants to align their photosynthetic organs toward incoming light and thereby to optimize photosynthetic activity. Formation of a lateral gradient of the phytohormone auxin is a key step to trigger asymmetric growth of the shoot leading to phototropic reorientation. To identify important regulators of auxin gradient formation, we developed an auxin flux model that enabled us to test in silico the impact of different morphological and biophysical parameters on gradient formation, including the contribution of the extracellular space (cell wall) or apoplast. Our model indicates that cell size, cell distributions, and apoplast thickness are all important factors affecting gradient formation. Among all tested variables, regulation of apoplastic pH was the most important to enable the formation of a lateral auxin gradient. To test this prediction, we interfered with the activity of plasma membrane Hâș -ATPases that are required to control apoplastic pH. Our results show that Hâș -ATPases are indeed important for the establishment of a lateral auxin gradient and phototropism. Moreover, we show that during phototropism, Hâș -ATPase activity is regulated by the phototropin photoreceptors, providing a mechanism by which light influences apoplastic pH

    Cytocompatibility of Medical Biomaterials Containing Nickel by Osteoblasts: a Systematic Literature Review

    Get PDF
    The present review is based on a survey of 21 studies on the cytocompatibility of medical biomaterials containing nickel, as assessed by cell culture of human and animal osteoblasts or osteoblast-like cells. Among the biomaterials evaluated were stainless steel, NiTi alloys, pure Ni, Ti, and other pure metals. The materials were either commercially available, prepared by the authors, or implanted by various techniques to generate a protective layer of oxides, nitrides, acetylides. The observation that the layers significantly reduced the initial release of metal ions and increased cytocompatibility was confirmed in cell culture experiments. Physical and chemical characterization of the materials was performed. This included, e.g., surface characterization (roughness, wettability, corrosion behavior, quantity of released ions, microhardness, and characterization of passivation layer). Cytocompatibility tests of the materials were conducted in the cultures of human or animal osteoblasts and osteoblast-like cells. The following assays were carried out: cell proliferation and viability test, adhesion test, morphology (by fluorescent microscopy or SEM). Also phenotypic and genotypic markers were investigated. In the majority of works, it was found that the most cytocompatible materials were stainless steel and NiTi alloy. Pure Ni was rendered and less cytocompatible. All the papers confirmed that the consequence of the formation of protective layers was in significant increase of cytocompatibility of the materials. This indicates the possible further modifications of the manufacturing process (formation of the passivation layer)

    A phosphorylation switch turns a positive regulator of phototropism into an inhibitor of the process.

    Get PDF
    Phototropins are light-activated protein kinases, which contribute to photosynthesis optimization both through enhancement of photon absorption when light is limiting and avoidance responses in high light. This duality is in part endowed by the presence of phototropins with different photosensitivity (phot1 and phot2). Here we show that phot1, which senses low light to promote positive phototropism (growth towards the light), also limits the response in high light. This response depends in part on phot1-mediated phosphorylation of Phytochrome Kinase Substrate 4 (PKS4). This light-regulated phosphorylation switch changes PKS4 from a phototropism enhancer in low light to a factor limiting the process in high light. In such conditions phot1 and PKS4 phosphorylation prevent phototropic responses to shallow light gradients and limit phototropism in a natural high light environment. Hence, by modifying PKS4 activity in high light the phot1-PKS4 regulon enables appropriate physiological adaptations over a range of light intensities

    Simulation of exciton formation and transport in electrically driven polariton laser structures

    No full text
    A model for exciton formation, dissociation and transport is proposed for the simulation of an electrically pumped polariton laser with a geometry similar to that of a VCSEL and resonant cavity LEDs. We demonstrate how the strain effects and the geometry of the device influence the exciton distribution for a GaN/InGaN laser structure

    Simulation of exciton formation and transport in electrically driven polariton laser structures

    No full text
    A model for exciton formation, dissociation and transport is proposed for the simulation of an electrically pumped polariton laser with a geometry similar to that of a VCSEL and resonant cavity LEDs. We demonstrate how the strain effects and the geometry of the device influence the exciton distribution for a GaN/InGaN laser structure
    corecore