66,585 research outputs found
Phase diagram of two-species Bose-Einstein condensates in an optical lattice
The exact macroscopic wave functions of two-species Bose-Einstein condensates
in an optical lattice beyond the tight-binding approximation are studied by
solving the coupled nonlinear Schrodinger equations. The phase diagram for
superfluid and insulator phases of the condensates is determined analytically
according to the macroscopic wave functions of the condensates, which are seen
to be traveling matter waves.Comment: 13 pages, 2 figure
Superluminal Caustics of Close, Rapidly-Rotating Binary Microlenses
The two outer triangular caustics (regions of infinite magnification) of a
close binary microlens move much faster than the components of the binary
themselves, and can even exceed the speed of light. When , where
is the caustic speed, the usual formalism for calculating the lens
magnification breaks down. We develop a new formalism that makes use of the
gravitational analog of the Li\'enard-Wiechert potential. We find that as the
binary speeds up, the caustics undergo several related changes: First, their
position in space drifts. Second, they rotate about their own axes so that they
no longer have a cusp facing the binary center of mass. Third, they grow larger
and dramatically so for . Fourth, they grow weaker roughly in
proportion to their increasing size. Superluminal caustic-crossing events are
probably not uncommon, but they are difficult to observe.Comment: 12 pages, 7 ps figures, submitted to Ap
Projector operators for the no-core shell model
Projection operators for the use within ab initio no-core shell model, are
suggested.Comment: 3 page
Chirality Dependence of the -Momentum Dark Excitons in Carbon Nanotubes
Using a collection of twelve semiconducting carbon nanotube samples, each
highly enriched in a single chirality, we study the chirality dependence of the
-momentum dark singlet exciton using phonon sideband optical spectroscopy.
Measurements of bright absorptive and emissive sidebands of this finite
momentum exciton identify its energy as 20 - 38 meV above the bright singlet
exciton, a separation that exhibits systematic dependencies on tube diameter,
family, and semiconducting type. We present calculations that explain
how chiral angle dependence in this energy separation relates to the Coulomb
exchange interaction, and elaborate the dominance of the phonon
sidebands over the zone-center phonon sidebands over a wide range of
chiralities. The Kataura plot arising from these data is qualitatively well
described by theory, but the energy separation between the sidebands shows a
larger chiral dependence than predicted. This latter observation may indicate a
larger dispersion for the associated phonon near the point than expected
from finite distance force modeling.Comment: 24 pages, 12 figures, 1 table; slight title change, Figures 1 and 11
added, reference added, presentation improved throughout documen
Symbolic Dynamics Analysis of the Lorenz Equations
Recent progress of symbolic dynamics of one- and especially two-dimensional
maps has enabled us to construct symbolic dynamics for systems of ordinary
differential equations (ODEs). Numerical study under the guidance of symbolic
dynamics is capable to yield global results on chaotic and periodic regimes in
systems of dissipative ODEs which cannot be obtained neither by purely
analytical means nor by numerical work alone. By constructing symbolic dynamics
of 1D and 2D maps from the Poincare sections all unstable periodic orbits up to
a given length at a fixed parameter set may be located and all stable periodic
orbits up to a given length may be found in a wide parameter range. This
knowledge, in turn, tells much about the nature of the chaotic limits. Applied
to the Lorenz equations, this approach has led to a nomenclature, i.e.,
absolute periods and symbolic names, of stable and unstable periodic orbits for
an autonomous system. Symmetry breakings and restorations as well as
coexistence of different regimes are also analyzed by using symbolic dynamics.Comment: 35 pages, LaTeX, 13 Postscript figures, uses psfig.tex. The revision
concerns a bug at the end of hlzfig12.ps which prevented the printing of the
whole .ps file from page 2
Small Angle Shubnikov-de Haas Measurements in Silicon MOSFET's: the Effect of Strong In-Plane Magnetic Field
Measurements in magnetic fields applied at small angles relative to the
electron plane in silicon MOSFETs indicate a factor of two increase of the
frequency of Shubnikov-de Haas oscillations at H>H_{sat}. This signals the
onset of full spin polarization above H_{sat}, the parallel field above which
the resistivity saturates to a constant value. For H<H_{sat}, the phase of the
second harmonic of the oscillations relative to the first is consistent with
scattering events that depend on the overlap instead of the sum of the spin-up
and spin-down densities of states.Comment: 4 pages; figures now inserted in text; additional referenc
- …