21,233 research outputs found

    Observation of fast stochastic ion heating by drift waves

    Get PDF
    Anomalously fast ion heating has been observed in the Caltech Encore tokamak [Phys. Rev. Lett. 59, 1436 (1987)], with the use of laser-induced fluorescence. This heating was found to be independent of electron temperature, but was well correlated with the presence of large-amplitude drift-Alfvén waves. Evidence is presented that suggests that the heating is stochastic and occurs when the ion displacement due to polarization drift becomes comparable to the perpendicular wavelength, i.e., when k[perpendicular] (mik[perpendicular] phi0/qB^2)~1. Stochastic heating may also be the cause of the anomalously high ion temperatures observed in reversed-field pinches

    Real-time phase-selective data acquisition system for measurement of wave phenomena in pulsed plasma discharges

    Get PDF
    A novel data acquisition system and methodology have been developed for the study of wave phenomena in pulsed plasma discharges. The method effectively reduces experimental uncertainty due to shot-to-shot fluctuations in high repetition rate experiments. Real-time analysis of each wave form allows classification of discharges by wave amplitude, phase, or other features. Measurements can then be constructed from subsets of discharges having similar wave properties. The method clarifies the trade-offs between experimental uncertainty reduction and increased demand for data storage capacity and acquisition time. Finally, this data acquisition system is simple to implement and requires relatively little equipment: only a wave form digitizer and a moderately fast computer

    Observations of fast anisotropic ion heating, ion cooling, and ion recycling in large-amplitude drift waves

    Get PDF
    Large-amplitude drift wave fluctuations are observed to cause severe ion temperature oscillations in plasmas of the Caltech Encore tokamak [J. M. McChesney, P. M. Bellan, and R. A. Stern, Phys. Fluids B 3, 3370 (1991)]. Experimental investigations of the complete ion dynamical behavior in these waves are presented. The wave electric field excites stochastic ion orbits in the plane normal (perpendicular to) to B, resulting in rapid perpendicular to heating. Ion-ion collisions impart energy along (parallel to) B, relaxing the perpendicular to-parallel to temperature anisotropy. Hot ions with large orbit radii escape confinement, reaching the chamber wall and cooling the distribution. Cold ions from the plasma edge convect back into the plasma (i.e., recycle), causing further cooling and significantly replenishing the density depleted by orbit losses. The ion-ion collision period tau(ii)similar to Tau(3/2)/n fluctuates strongly with the drift wave phase, due to intense (approximate to 50%) fluctuations in n and Tau. Evidence for particle recycling is given by observations of bimodal ion velocity distributions near the plasma edge, indicating the presence of cold ions (0.4 eV) superposed atop the hot (4-8 eV) plasma background. These appear periodically, synchronous with the drift wave phase at which ion fluid flow from the wall toward the plasma center peaks. Evidence is presented that such a periodic heat/loss/recycle/cool process is expected in plasmas with strong stochastic heating

    Poincaré maps define topography of Vlasov distribution functions consistent with stochastic dynamics

    Get PDF
    In a recent paper [A. D. Bailey et al., Phys. Rev. Lett. 34, 3124 (1993)], the authors presented direct planar laser induced fluorescence measurements of the oscillatory ion fluid velocity field in the presence of a large amplitude drift-Alfven wave. Surprisingly, the measured speeds were an order of magnitude lower than predicted by standard fluid theory, yet the flow pattern was consistent with the fluid theory. A new model, based on the connection between stochasticity and bulk behavior, is presented which gives insights into the cause of this behavior. It is shown that when particle motion is stochastic, invariant sets of a 'Poincaré map' define a flat-topped particle distribution function consistent with both the electromagnetic field driving the Vlasov equation and the fine-scale single particle dynamics. The approach is described for the general case and explored for a slab model of the observed drift wave

    Juncture stress fields in multicellular shell structures. Volume III - Stresses and deformations on fixed-edge segmental conical shells Final report

    Get PDF
    Equations for thin elastic conical shells and digital program for analysis of stress and deformation on fixed edge segmental conical shells - solution by finite difference techniqu

    Space station integrated wall design and penetration damage control

    Get PDF
    A methodology was developed to allow a designer to optimize the pressure wall, insulation, and meteoroid/debris shield system of a manned spacecraft for a given spacecraft configuration and threat environment. The threat environment consists of meteoroids and orbital debris, as specified for an arbitrary orbit and expected lifetime. An overall probability of no penetration is calculated, as well as contours of equal threat that take into account spacecraft geometry and orientation. Techniques, tools, and procedures for repairing an impacted and penetrated pressure wall were developed and tested. These techniques are applied from the spacecraft interior and account for the possibility of performing the repair in a vacuum. Hypervelocity impact testing was conducted to: (1) develop and refine appropriate penetration functions, and (2) determine the internal effects of a penetration on personnel and equipment

    Capacitance of Gated GaAs/AlGaAs Heterostructures Subject to In-plane Magnetic Fields

    Full text link
    A detailed analysis of the capacitance of gated GaAs/AlGaAs heterostructures is presented. The nonlinear dependence of the capacitance on the gate voltage and in-plane magnetic field is discussed together with the capacitance quantum steps connected with a population of higher 2D gas subbands. The results of full self-consistent numerical calculations are compared to recent experimental data.Comment: 4 pages, Revtex. 4 PostScript figures in an uuencoded compressed file available upon request. Phys. Rev.B, in pres

    Space station integrated wall design and penetration damage control

    Get PDF
    The analysis code BUMPER executes a numerical solution to the problem of calculating the probability of no penetration (PNP) of a spacecraft subject to man-made orbital debris or meteoroid impact. The codes were developed on a DEC VAX 11/780 computer that uses the Virtual Memory System (VMS) operating system, which is written in FORTRAN 77 with no VAX extensions. To help illustrate the steps involved, a single sample analysis is performed. The example used is the space station reference configuration. The finite element model (FEM) of this configuration is relatively complex but demonstrates many BUMPER features. The computer tools and guidelines are described for constructing a FEM for the space station under consideration. The methods used to analyze the sensitivity of PNP to variations in design, are described. Ways are suggested for developing contour plots of the sensitivity study data. Additional BUMPER analysis examples are provided, including FEMs, command inputs, and data outputs. The mathematical theory used as the basis for the code is described, and illustrates the data flow within the analysis

    Antiferromagnetic s-d exchange coupling in GaMnAs

    Full text link
    Measurements of coherent electron spin dynamics in Ga(1-x)Mn(x)As/Al(0.4)Ga(0.6)As quantum wells with 0.0006% < x < 0.03% show an antiferromagnetic (negative) exchange bewteen s-like conduction band electrons and electrons localized in the d-shell of the Mn2+ impurities. The magnitude of the s-d exchange parameter, N0 alpha, varies as a function of well width indicative of a large and negative contribution due to kinetic exchange. In the limit of no quantum confinement, N0 alpha extrapolates to -0.09 +/- 0.03 eV indicating that antiferromagnetic s-d exchange is a bulk property of GaMnAs. Measurements of the polarization-resolved photoluminescence show strong discrepancy from a simple model of the exchange enhanced Zeeman splitting, indicative of additional complexity in the exchange split valence band.Comment: 5 pages, 4 figures and one action figur

    The WISE AGN Catalog

    Get PDF
    We present two large catalogs of AGN candidates identified across ~75% of the sky from the Wide-field Infrared Survey Explorer's AllWISE Data Release. Both catalogs, some of the largest such catalogs published to date, are selected purely on the basis of mid-IR photometry in the WISE W1 and W2 bands. The catalogs are designed to be appropriate for a broad range of scientific investigations, with one catalog emphasizing reliability while the other emphasizes completeness. Specifically, the R90 catalog consists of 4,543,530 AGN candidates with 90% reliability, while the C75 catalog consists of 20,907,127 AGN candidates with 75% completeness. We provide a detailed discussion of potential artifacts, and excise portions of the sky close to the Galactic Center, Galactic Plane, nearby galaxies, and other expected contaminating sources. Our final catalogs cover 30,093 deg^2 of extragalactic sky. These catalogs are expected to enable a broad range of science, and we present a few simple illustrative cases. From the R90 sample we identify 45 highly variable AGN lacking radio counterparts in the FIRST survey, implying they are unlikely to be blazars. One of these sources, WISEA J142846.71+172353.1, is a mid-IR-identified changing-look quasar at z=0.104. We characterize our catalogs by comparing them to large, wide-area AGN catalogs in the literature, specifically UV-to-near-IR quasar selections from SDSS and XDQSOz, mid-IR selection from Secrest et al. (2015) and X-ray selection from ROSAT. From the latter work, we identify four ROSAT X-ray sources that each are matched to three WISE-selected AGN in the R90 sample within 30". Palomar spectroscopy reveals one of these systems, 2RXS J150158.6+691029, to consist of a triplet of quasars at z=1.133 +/- 0.004, suggestive of a rich group or forming galaxy cluster.(Abridged)Comment: Accepted for publication in the Astrophysical Journal Supplements. Updated with comments from the referee. 20 pages, 15 figures, 8 tables. The WISE AGN Catalogs can be made available upon request by writing to [email protected]
    corecore