6,597 research outputs found

    Continuous repetition rate tuning with timing window independent self-seeding of a gain-switched Fabry-PÉrot Laser

    Get PDF
    In this work, we propose a novel self-seeding technique that yields timing window independent operation allowing continuous repetition rate tuning of the self-seeded gain-switched (SSGS) laser. This is achieved by employing a highly linearly chirped fiber Bragg grating (LC FBG) as a wavelength selective element. The reflected gain-switched pulses are dispersed to such an extent, that temporal overlap occurs between them. This overlap creates a pseudo continues wave like signal that is re-injected into the gain-switched laser

    Wavelength tunable lasers in future optical communication systems

    Get PDF
    Monolithic tunable lasers (TL) have been an important component in dense wavelength division multiplexed (DWDM) systems mainly because of their ability to reduce inventory costs associated with different part numbers for fixed wavelength distributed feedback (DFB) lasers. Moreover, the use of wavelength agile laser diodes in DWDM networks has gained a lot of interest in recent years, due to emerging new applications such as optical switching and routing, which require fast switching lasers in the nanosecond regime (Coldren et al., 2000). Employment of such lasers as tunable transmitters in wavelength packet switched (WPS) networks is one of the possible applications of these devices. In such systems, the information to be transmitted could be encoded onto a destination dependent wavelength and the routing of traffic could be performed on a packet-by-packet basis. The utilization of TLs in an optical switching and routing environment would put stringent requirements on its performance. This would include increased tuning range, high side mode suppression ratio (SMSR), reduced switching time and excellent wavelength stability. The sampled-grating distributed Bragg reflector (SG DBR) TL proves to be an ideal candidate, due to its large tuning range (40 nm), high output power (10 dBm), high side mode suppression ratio (SMSR > 30 dB) and simplicity of integration

    Frequency drift characterisation of directly modulated SGDBR tunable lasers

    Get PDF
    Tunable Lasers (TL) are rapidly becoming key components in Dense Wavelength Division Multiplexed (DWDM) systems, packet switched schemes and access networks. They are being introduced as alternatives to fixed wavelength sources to provide a greater degree of flexibility and to reduce large inventory [1]. The SGDBR laser is an ideal candidate due to its large tuning range (40 nm), high output power (10 dBm), large Side Mode Suppression Ratio (>30 dB) and its ability to be monolithically integrated with other semiconductor devices. Such integration could comprise of a Semiconductor Optical Amplifier (SOA), allowing for extended reach tunable operation, in a very compact and low cost footprint [2]. Thus far, external modulation has been the most popular modulation technique used with TLs. However, the addition of the modulator introduces loss to the transmitted signal due to high insertion and coupling losses. Addressing these short comings would result in increased cost and complexity of the transmitter. Alternatively, direct modulation is one of the simplest and cost efficient ways to modulate the lightwave signal. Hence, it is rational to investigate the performance of a directly modulated SGDBR laser in order to verify its usefulness in a WDM based access network scenario. Previous work in this area has mainly focused on bandwidth characterisation and transmission experiments [3, 4]. In this paper, we characterise the frequency drift associated with a directly modulated SGDBR laser incorporating a wavelength locker. Focus is placed on investigating the magnitude and settling time of this drift. In addition, we also demonstrate how the frequency drift has a detrimental effect on DWDM system performance when the modulated channel is passed through a narrow Optical Band-Pass Filter (OBPF) centred at the target emission frequency

    Genetic parameters of wool colour and skin traits in Corriedale sheep.

    Get PDF
    Clean wool colour (CWC) is an important wool price determinant and has been related to suint characteristics, i.e. sudoriparous and sebaceous gland secretions, such as suint percentage and suint K content. In this work heritability, phenotypic and genetic correlations among wool colour and skin traits were examined. The genetic estimates were assessed by Restricted Maximum Likelihood (REML) procedures using average information algorithm (AIREML) in a Corriedale flock. The traits analysed were wool colour traits (CWC), yellow predictive colour (YPC), and Visual Score; suint traits such as suint percentage and potassium and sodium concentrations in suint, and physiological traits such as potassium and sodium concentrations in the skin, including plasma and red blood cells. The objectives of this study were to assess phenotypic and genetic correlations between wool colour and skin traits, and to find the suitability of these traits as indirect selection criteria for clean wool colour. Suint traits were highly genetically correlated to YPC. Suint K, but not suint percentage, was found to have a high genetic correlation with CWC. Skin K, Visual Score, YPC and suint K were amongst the best indirect selection criteria for clean wool colour. However, selection using these traits was expected to reduceCWCfrom 52% to 49% of that estimated under direct selection

    Characterization of wavelength tunable lasers for future optical communication systems

    Get PDF
    The use of tunable lasers (TL) in dense wavelength division multiplexed (DWDM) networks for optical switching, routing and networking has gained a lot of interest in recent years. Employment of such TLs as tunable transmitters in wavelength packet switched (WPS) networks is one of the possible applications of these devices. In such systems, the information to be transmitted could be encoded onto a destination dependent wavelength and the routing of traffic could be performed on a packet-by-packet basis. The authors investigate the possibility of using TLs in DWDM WPS networks by focusing on the characterisation of the instantaneous frequency drift of a TL due to wavelength tuning and direct modulation. Characterization of the linewidth of the TLs is also presented to verify the feasibility of using TLs in systems employing advanced modulation formats

    Triple-wavelength fiber ring laser based on a hybrid gain medium actively mode-locked at 10 GHz

    Get PDF
    A fiber ring laser based on a hybrid gain medium that produces three simultaneously mode-locked wavelength channels is presented. The lithium niobate based modulator used to actively mode-lock the laser cavity at 10 GHz is birefringence compensated to reduce its polarization sensitivity. A Lyot filter defines the lasers multiwavelength spectrum which has a wavelength spacing of 1 nm. The polarization sensitive nature of the laser cavity and its affect on the performance of the laser is discussed

    Feasibility of mapping benthic biotopes in the Hudson River

    Get PDF
    Successful management of aquatic resources requires comprehensive maps that identify the spatial distribution and extent of potentially vulnerable habitats and their resident biota (e.g., essential fish habitat). We illustrate a technique that describes submerged landscapes not only in terms of geophysical properties, but also in terms of the resident biotic communities. Biological community distribution was highly correlated with the geophysical provinces initially identified by Bell et al. (2000). However, fewer groups of stations (created mainly by combining provinces) explained almost as much of the variation in benthic community structure and was a better description of the major biotopes in this stretch of the Hudson River Estuary. The findings of this pilot study can lead to sampling design criteria for the rest of the Hudson River Estuary

    Indirect selection criteria against clean wool colour in Corriedale sheep and their effects on wool production traits.

    Get PDF
    The potential of greasy wool colour subjective assessment Visual Colour Score (VCS) and the yellow predictive test (YPC) as indirect selection criteria for reduction of clean wool colour (CWC) in Corriedale sheep was examined. The heritability of these wool colour traits and the wool production traits, greasy (GFW) and clean fleece weights (CFW), and mean fibre diameter (MFD) and the phenotypic and genetic correlations among these traits were estimated from a Corriedale flock using AIREML procedures. A high genetic correlation between YPC and CWC was observed, indicating that YPC could be a suitable indirect selection criterium for CWC. However, direct selection against CWC was predicted to produce faster genetic improvements in CWC than that expected under indirect selection via YPC. Single trait selection based on VCS or YPC were expected to reduce the response in CWC to 51% and 49% of that estimated for direct selection. The positive genetic correlations of CWC, YPC and VCS with CFW and MFD would cause a reduction in both MFD and CFW to result from selection that reduces wool colour. The results showed that the most effective way to genetically improve CWC was through indirect selection to reduce MFD, CFW or GFW, followed by direct selection, but the premiums for CWC in the Corriedale breed may not be sufficient to justify the expected losses in CFW

    Benthic Mapping for Habitat Classification in the Peconic Estuary: Phase I Groundtruth Studies

    Get PDF
    Benthic habitat maps of the estuary seafloor will increase our knowledge of range and variability in benthic habitats, will assist managers in their efforts to protect and/or restore commercially and recreationally important finfish and shellfish, will link land usage (e.g. developed vs. undeveloped areas) and water quality data to benthic habitat quality, and will make it possible to utilize faunal data as a long-term indicator of the overall “health” of the estuary. We are developing benthic habitat maps by combining high-resolution remote sensing techniques with detailed study of the physical and faunal characteristics at point locations in different seafloor environments. In Phase I, six critical natural resource areas (CNRA: Robins Island, Shelter Island, Flanders Bay, Orient Bay, Northwest Harbor, and Gardiners Island) were acoustically mapped and sampled. Acoustic mapping used side-scan sonar and multibeam swath bathymetry and backscatter to generate bathymetric and backscatter images that provide high resolution detail about bottom morphology, sediment processes, and geophysical habitat, and that allow classification of the sea bed into regions. Samples for macrofauna and sediment properties were collected within each bottom region to provide ground truth for the acoustic maps. Robins Island and Shelter Island areas were sampled at 30 and 35 locations, respectively, with two replicate samples at each location. The other four CNRA areas were sampled at 7-15 locations each, with no replication. Results suggest that the acoustic provinces identified do indeed represent areas of similar faunal and sedimentary characteristics, and that this approach can provide new insights into benthic community structure. Phase II benthic habitat studies will extend mapping from nearly shore to shore (north-south) across four different reaches of the Peconic Estuary

    Characterization of frequency drift of sampled-grating DBR laser module under direct modulation

    Get PDF
    The authors demonstrate the drift in frequency of a static sampled-grating distributed Bragg reflector (SG DBR) laser module when it is subjected to direct modulation. The magnitude of drift and its settling time is characterized as a function of the index of modulation. Results show that when the directly modulated SG DBR is optically filtered, as in a dense wavelength- division- multiplexed system, a power penalty of 6.7 dB is incurred in comparison to the unfiltered case
    • 

    corecore