328 research outputs found

    Reconstructed Rough Growing Interfaces; Ridgeline Trapping of Domain Walls

    Full text link
    We investigate whether surface reconstruction order exists in stationary growing states, at all length scales or only below a crossover length, lrecl_{\rm rec}. The later would be similar to surface roughness in growing crystal surfaces; below the equilibrium roughening temperature they evolve in a layer-by-layer mode within a crossover length scale lRl_{\rm R}, but are always rough at large length scales. We investigate this issue in the context of KPZ type dynamics and a checker board type reconstruction, using the restricted solid-on-solid model with negative mono-atomic step energies. This is a topology where surface reconstruction order is compatible with surface roughness and where a so-called reconstructed rough phase exists in equilibrium. We find that during growth, reconstruction order is absent in the thermodynamic limit, but exists below a crossover length lrec>lRl_{\rm rec}>l_{\rm R}, and that this local order fluctuates critically. Domain walls become trapped at the ridge lines of the rough surface, and thus the reconstruction order fluctuations are slaved to the KPZ dynamics

    Quantized Hall Conductance in a Two-Dimensional Periodic Potential

    Get PDF
    The Hall conductance of a two-dimensional electron gas has been studied in a uniform magnetic field and a periodic substrate potential U. The Kubo formula is written in a form that makes apparent the quantization when the Fermi energy lies in a gap. Explicit expressions have been obtained for the Hall conductance for both large and small U/ℏωc

    Preroughening, Diffusion, and Growth of An FCC(111) Surface

    Full text link
    Preroughening of close-packed fcc(111) surfaces, found in rare gas solids, is an interesting, but poorly characterized phase transition. We introduce a restricted solid-on-solid model, named FCSOS, which describes it. Using mostly Monte Carlo, we study both statics, including critical behavior and scattering properties, and dynamics, including surface diffusion and growth. In antiphase scattering, it is shown that preroughening will generally show up at most as a dip. Surface growth is predicted to be continuous at preroughening, where surface self-diffusion should also drop. The physical mechanism leading to preroughening on rare gas surfaces is analysed, and identified in the step-step elastic repulsion.Comment: Revtex + uuencoded figures, to appear in Physical Review Letter

    An exact universal amplitude ratio for percolation

    Get PDF
    The universal amplitude ratio R~ξ\tilde{R}_{\xi} for percolation in two dimensions is determined exactly using results for the dilute A model in regime 1, by way of a relationship with the q-state Potts model for q<4.Comment: 5 pages, LaTeX, submitted to J. Phys. A. One paragraph rewritten to correct error

    Roughening Induced Deconstruction in (100) Facets of CsCl Type Crystals

    Full text link
    The staggered 6-vertex model describes the competition between surface roughening and reconstruction in (100) facets of CsCl type crystals. Its phase diagram does not have the expected generic structure, due to the presence of a fully-packed loop-gas line. We prove that the reconstruction and roughening transitions cannot cross nor merge with this loop-gas line if these degrees of freedom interact weakly. However, our numerical finite size scaling analysis shows that the two critical lines merge along the loop-gas line, with strong coupling scaling properties. The central charge is much larger than 1.5 and roughening takes place at a surface roughness much larger than the conventional universal value. It seems that additional fluctuations become critical simultaneously.Comment: 31 pages, 9 figure

    Anomalous Roughness in Dimer-Type Surface Growth

    Full text link
    We point out how geometric features affect the scaling properties of non-equilibrium dynamic processes, by a model for surface growth where particles can deposit and evaporate only in dimer form, but dissociate on the surface. Pinning valleys (hill tops) develop spontaneously and the surface facets for all growth (evaporation) biases. More intriguingly, the scaling properties of the rough one dimensional equilibrium surface are anomalous. Its width, WLαW\sim L^\alpha, diverges with system size LL, as α=1/3\alpha={1/3} instead of the conventional universal value α=1/2\alpha={1/2}. This originates from a topological non-local evenness constraint on the surface configurations.Comment: Published version in PR

    Universal amplitude of the free energy density in finite-size scaling: the Potts universality

    Full text link
    Using the numerical results of the finite-size scaling study of the q-state Potts model by Bloete and Nightingale, we obtain conjectured expressions for the universal amplitude of the free energy density.Comment: Old paper, for archiving. 4 pages, IOP macr

    Dynamical correlations and quantum phase transition in the quantum Potts model

    Get PDF
    We present a detailed study of the finite temperature dynamical properties of the quantum Potts model in one dimension.Quasiparticle excitations in this model have internal quantum numbers, and their scattering matrix {\gf deep} in the gapped phases is shown to take a simple {\gf exchange} form in the perturbative regimes. The finite temperature correlation functions in the quantum critical regime are determined using conformal invariance, while {\gf far from the quantum critical point} we compute the decay functions analytically within a semiclassical approach of Sachdev and Damle [K. Damle and S. Sachdev, Phys. Rev. B \textbf{57}, 8307 (1998)]. As a consequence, decay functions exhibit a {\em diffusive character}. {\gf We also provide robust arguments that our semiclassical analysis carries over to very low temperatures even in the vicinity of the quantum phase transition.} Our results are also relevant for quantum rotor models, antiferromagnetic chains, and some spin ladder systems.Comment: 18 PRB pages added correction

    Finite-Size Scaling in Two-dimensional Continuum Percolation Models

    Full text link
    We test the universal finite-size scaling of the cluster mass order parameter in two-dimensional (2D) isotropic and directed continuum percolation models below the percolation threshold by computer simulations. We found that the simulation data in the 2D continuum models obey the same scaling expression of mass M to sample size L as generally accepted for isotropic lattice problems, but with a positive sign of the slope in the ln-ln plot of M versus L. Another interesting aspect of the finite-size 2D models is also suggested by plotting the normalized mass in 2D continuum and lattice bond percolation models, versus an effective percolation parameter, independently of the system structure (i.e. lattice or continuum) and of the possible directions allowed for percolation (i.e. isotropic or directed) in regions close to the percolation thresholds. Our study is the first attempt to map the scaling behaviour of the mass for both lattice and continuum model systems into one curve.Comment: 9 pages, Revtex, 2 PostScript figure
    corecore