5,026 research outputs found
Generalized Hamilton-Jacobi equations for nonholonomic dynamics
Employing a suitable nonlinear Lagrange functional, we derive generalized
Hamilton-Jacobi equations for dynamical systems subject to linear velocity
constraints. As long as a solution of the generalized Hamilton-Jacobi equation
exists, the action is actually minimized (not just extremized)
Enhancement of the electric dipole moment of the electron in PbO
The a(1) state of PbO can be used to measure the electric dipole moment of
the electron d_e. We discuss a semiempirical model for this state, which yields
an estimate of the effective electric field on the valence electrons in PbO.
Our final result is an upper limit on the measurable energy shift, which is
significantly larger than was anticipated earlier: .Comment: 4 pages, revtex4, no figures, submitted to PR
Enhancement of the electric dipole moment of the electron in the YbF molecule
We calculate an effective electric field on the unpaired electron in the YbF
molecule. This field determines sensitivity of the molecular experiment to the
electric dipole moment of the electron. We use experimental value of the
spin-doubling constant to estimate the admixture of the configuration with the
hole in the 4f-shell of Ytterbium to the ground state of the molecule. This
admixture reduces the field by 7%. Our value for the effictive field is 5.1
a.u. = 2.5 10^{10} V/cm.Comment: 5 pages, LATEX, uses revtex.st
Electric dipole moment enhancement factor of thallium
The goal of this work is to resolve the present controversy in the value of
the EDM enhancement factor of Tl. We have carried out several calculations by
different high-precision methods, studied previously omitted corrections, as
well as tested our methodology on other parity conserving quantities. We find
the EDM enhancement factor of Tl to be equal to -573(20). This value is 20%
larger than the recently published result of Nataraj et al. [Phys. Rev. Lett.
106, 200403 (2011)], but agrees very well with several earlier results.Comment: 5 pages; v2: link to supplemental material adde
Highly charged ions: optical clocks and applications in fundamental physics
Recent developments in frequency metrology and optical clocks have been based
on electronic transitions in atoms and singly charged ions as references. These
systems have enabled relative frequency uncertainties at a level of a few parts
in . This accomplishment not only allows for extremely accurate time
and frequency measurements, but also to probe our understanding of fundamental
physics, such as variation of fundamental constants, violation of the local
Lorentz invariance, and forces beyond the Standard Model of Physics. In
addition, novel clocks are driving the development of sophisticated technical
applications. Crucial for applications of clocks in fundamental physics are a
high sensitivity to effects beyond the Standard Model and Einstein's Theory of
Relativity and a small frequency uncertainty of the clock. Highly charged ions
offer both. They have been proposed as highly accurate clocks, since they
possess optical transitions which can be extremely narrow and less sensitive to
external perturbations compared to current atomic clock species. The selection
of highly charged ions in different charge states offers narrow transitions
that are among the most sensitive ones for a change in the fine-structure
constant and the electron-to-proton mass ratio, as well as other new physics
effects. Recent advances in trapping and sympathetic cooling of highly charged
ions will in the future enable high accuracy optical spectroscopy. Progress in
calculating the properties of selected highly charged ions has allowed the
evaluation of systematic shifts and the prediction of the sensitivity to the
"new physics" effects. This article reviews the current status of theory and
experiment in the field.Comment: 53 pages, 16 figures, submitted to RM
Trailing Edge Noise Reduction by Passive and Active Flow Controls
This paper presents the results on the use of porous metal foams (passive control) and dielectric barrier surface plasma actuations (active control) for the reduction of vortex shedding tonal noises from the nonflat plate type trailing edge serration in a NACA0012 airfoil previously discussed in Chong et al. (AIAA J. Vol. 51, 2013, pp. 2665-2677). The use of porous metal foams to fill the interstices between adjacent members of the sawtooth can almost completely suppress the vortex shedding tonal noise, whilst the serration effect on the broadband noise reduction is retained. This concept will promote the nonflat plate type serrated trailing edge to become a genuine alternative to the conventional flat plate type serrated trailing edge, which is known to have drawbacks in the structural stability, aerodynamic performances and implementation issues. For the plasma actuators, configuration which produces electric wind in a tangential direction is found to be not very effective in suppressing the vortices emanated from the serration blunt root. On the other hand, for the plasma configuration which produces electric wind in a vertical direction, good level of vortex shedding tonal noise reduction has been demonstrated. However, the self noise produced by the plasma actuators negates the noise benefits on the tonal noise reduction. This characteristic illustrates the need to further develop the plasma actuators in a two pronged approach. First is to increase the electric wind speed, thereby allowing the plasma actuators to be used in a higher free jet velocity which naturally produces a larger level of jet noise. Second, the self noise radiated by the plasma actuators should be reduced
Using Molecules to Measure Nuclear Spin-Dependent Parity Violation
Nuclear spin-dependent parity violation arises from weak interactions between
electrons and nucleons, and from nuclear anapole moments. We outline a method
to measure such effects, using a Stark-interference technique to determine the
mixing between opposite-parity rotational/hyperfine levels of ground-state
molecules. The technique is applicable to nuclei over a wide range of atomic
number, in diatomic species that are theoretically tractable for
interpretation. This should provide data on anapole moments of many nuclei, and
on previously unmeasured neutral weak couplings
Study of the correlation effects in Yb^+ and implications for parity violation
Calculation of the energies, magnetic dipole hyperfine structure constants,
E1 transition amplitudes between the low-lying states, and nuclear
spin-dependent parity-nonconserving amplitudes for the ^2S_{1/2} -
^2D_{3/2,5/2} transitions in ^{171}Yb^+ ion is performed using two different
approaches. First, we carried out many-body perturbation theory calculation
considering Yb^+ as a monovalent system. Additional all-order calculations are
carried out for selected properties. Second, we carried out configuration
interaction calculation considering Yb as a 15-electron system and compared the
results obtained by two methods. The accuracy of different methods is
evaluated. We find that the monovalent description is inadequate for evaluation
of some atomic properties due to significant mixing of the one-particle and the
hole-two-particle configurations. Performing the calculation by such different
approaches allowed us to establish the importance of various correlation
effects for Yb^+ atomic properties for future improvement of theoretical
precision in this complicated system.Comment: 11 pages;v2: minor changes and one reference adde
Enhancement of the electric dipole moment of the electron in BaF molecule
We report results of ab initio calculation of the spin-rotational Hamiltonian
parameters including P- and P,T-odd terms for the BaF molecule. The ground
state wave function of BaF molecule is found with the help of the Relativistic
Effective Core Potential method followed by the restoration of molecular
four-component spinors in the core region of barium in the framework of a
non-variational procedure. Core polarization effects are included with the help
of the atomic Many Body Perturbation Theory for Barium atom. For the hyperfine
constants the accuracy of this method is about 5-10%.Comment: 8 pages, REVTEX, report at II International Symposium on Symmetries
in Subatomic Physics, Seattle 199
- …