82,787 research outputs found

    Size dependence of second-order hyperpolarizability of finite periodic chain under Su-Schrieffer-Heeger model

    Full text link
    The second hyperpolarizability γN(−3ωω,ω,ω)\gamma_N(-3\omega\omega,\omega,\omega) of NN double-bond finite chain of trans-polyactylene is analyzed using the Su-Schrieffer-Heeger model to explain qualitative features of the size-dependence behavior of γN\gamma_N. Our study shows that γN/N\gamma_N/N is {\it nonmonotonic} with NN and that the nonmonotonicity is caused by the dominant contribution of the intraband transition to γN\gamma_N in polyenes. Several important physical effects are discussed to reduce quantitative discrepancies between experimental and our resultsComment: 3 figures, 1 tabl

    Cell wall microstructure, pore size distribution and absolute density of hemp shiv

    Get PDF
    This paper, for the first time, fully characterizes the intrinsic physical parameters of hemp shiv including cell wall microstructure, pore size distribution and absolute density. Scanning electron microscopy revealed microstructural features similar to hardwoods. Confocal microscopy revealed three major layers in the cell wall: middle lamella, primary cell wall and secondary cell wall. Computed tomography improved the visualization of pore shape and pore connectivity in three dimensions. Mercury intrusion porosimetry (MIP) showed that the average accessible porosity was 76.67 ± 2.03% and pore size classes could be distinguished into micropores (3–10 nm) and macropores (0.1–1 µm and 20–80 µm). The absolute density was evaluated by helium pycnometry, MIP and Archimedes’ methods. The results show that these methods can lead to misinterpretation of absolute density. The MIP method showed a realistic absolute density (1.45 g cm−3) consistent with the density of the known constituents, including lignin, cellulose and hemi-cellulose. However, helium pycnometry and Archimedes’ methods gave falsely low values owing to 10% of the volume being inaccessible pores, which require sample pretreatment in order to be filled by liquid or gas. This indicates that the determination of the cell wall density is strongly dependent on sample geometry and preparation

    Reversibility Checking for Markov Chains

    Get PDF
    In this paper, we present reversibility preserving operations on Markov chain transition matrices. Simple row and column operations allow us to create new reversible transition matrices and yield an easy method for checking a Markov chain for reversibility

    Strong magnetic coupling between an electronic spin qubit and a mechanical resonator

    Get PDF
    We describe a technique that enables a strong, coherent coupling between a single electronic spin qubit associated with a nitrogen-vacancy impurity in diamond and the quantized motion of a magnetized nano-mechanical resonator tip. This coupling is achieved via careful preparation of dressed spin states which are highly sensitive to the motion of the resonator but insensitive to perturbations from the nuclear spin bath. In combination with optical pumping techniques, the coherent exchange between spin and motional excitations enables ground state cooling and the controlled generation of arbitrary quantum superpositions of resonator states. Optical spin readout techniques provide a general measurement toolbox for the resonator with quantum limited precision

    Interface Between Topological and Superconducting Qubits

    Get PDF
    We propose and analyze an interface between a topological qubit and a superconducting flux qubit. In our scheme, the interaction between Majorana fermions in a topological insulator is coherently controlled by a superconducting phase that depends on the quantum state of the flux qubit. A controlled phase gate, achieved by pulsing this interaction on and off, can transfer quantum information between the topological qubit and the superconducting qubit.Comment: 12 pages, 7 figures. V2: Final version as published in Phys. Rev. Lett, with detailed clarifications in the Appendi

    Modeling urban street patterns

    Full text link
    Urban streets patterns form planar networks whose empirical properties cannot be accounted for by simple models such as regular grids or Voronoi tesselations. Striking statistical regularities across different cities have been recently empirically found, suggesting that a general and details-independent mechanism may be in action. We propose a simple model based on a local optimization process combined with ideas previously proposed in studies of leaf pattern formation. The statistical properties of this model are in good agreement with the observed empirical patterns. Our results thus suggests that in the absence of a global design strategy, the evolution of many different transportation networks indeed follow a simple universal mechanism.Comment: 4 pages, 5 figures, final version published in PR

    Time dependent diffusion in a disordered medium with partially absorbing walls: A perturbative approach

    Full text link
    We present an analytical study of the time dependent diffusion coefficient in a dilute suspension of spheres with partially absorbing boundary condition. Following Kirkpatrick (J. Chem. Phys. 76, 4255) we obtain a perturbative expansion for the time dependent particle density using volume fraction ff of spheres as an expansion parameter. The exact single particle tt-operator for partially absorbing boundary condition is used to obtain a closed form time-dependent diffusion coefficient D(t)D(t) accurate to first order in the volume fraction ff. Short and long time limits of D(t)D(t) are checked against the known short-time results for partially or fully absorbing boundary conditions and long-time results for reflecting boundary conditions. For fully absorbing boundary condition the long time diffusion coefficient is found to be D(t)=5a2/(12fD0t)+O((D0t/a2)−2)D(t)=5 a^2/(12 f D_{0} t) +O((D_0t/a^2)^{-2}), to the first order of perturbation theory. Here ff is small but non-zero, D0D_0 the diffusion coefficient in the absence of spheres, and aa the radius of the spheres. The validity of this perturbative result is discussed

    Finite-Volume Energy Spectrum, Fractionalized Strings, and Low-Energy Effective Field Theory for the Quantum Dimer Model on the Square Lattice

    Get PDF
    We present detailed analytic calculations of finite-volume energy spectra, mean field theory, as well as a systematic low-energy effective field theory for the square lattice quantum dimer model. The analytic considerations explain why a string connecting two external static charges in the confining columnar phase fractionalizes into eight distinct strands with electric flux 14\frac{1}{4}. An emergent approximate spontaneously broken SO(2)SO(2) symmetry gives rise to a pseudo-Goldstone boson. Remarkably, this soft phonon-like excitation, which is massless at the Rokhsar-Kivelson (RK) point, exists far beyond this point. The Goldstone physics is captured by a systematic low-energy effective field theory. We determine its low-energy parameters by matching the analytic effective field theory with exact diagonalization results and Monte Carlo data. This confirms that the model exists in the columnar (and not in a plaquette or mixed) phase all the way to the RK point.Comment: 35 pages, 16 figure
    • …
    corecore