1,996 research outputs found

    Vacua of N=10 three dimensional gauged supergravity

    Full text link
    We study scalar potentials and the corresponding vacua of N=10 three dimensional gauged supergravity. The theory contains 32 scalar fields parametrizing the exceptional coset space E6(−14)SO(10)×U(1)\frac{E_{6(-14)}}{SO(10)\times U(1)}. The admissible gauge groups considered in this work involve both compact and non-compact gauge groups which are maximal subgroups of SO(10)×U(1)SO(10)\times U(1) and E6(−14)E_{6(-14)}, respectively. These gauge groups are given by SO(p)×SO(10−p)×U(1)SO(p)\times SO(10-p)\times U(1) for p=6,...10p=6,...10, SO(5)×SO(5)SO(5)\times SO(5), SU(4,2)×SU(2)SU(4,2)\times SU(2), G2(−14)×SU(2,1)G_{2(-14)}\times SU(2,1) and F4(−20)F_{4(-20)}. We find many AdS3_3 critical points with various unbroken gauge symmetries. The relevant background isometries associated to the maximally supersymmetric critical points at which all scalars vanish are also given. These correspond to the superconformal symmetries of the dual conformal field theories in two dimensions.Comment: 37 pages no figures, typos corrected and a little change in the forma

    L-branes

    Get PDF
    The superembedding approach to pp-branes is used to study a class of pp-branes which have linear multiplets on the worldvolume. We refer to these branes as L-branes. Although linear multiplets are related to scalar multiplets (with 4 or 8 supersymmetries) by dualising one of the scalars of the latter to a pp-form field strength, in many geometrical situations it is the linear multiplet version which arises naturally. Furthermore, in the case of 8 supersymmetries, the linear multiplet is off-shell in contrast to the scalar multiplet. The dynamics of the L-branes are obtained by using a systematic procedure for constructing the Green-Schwarz action from the superembedding formalism. This action has a Dirac-Born-Infeld type structure for the pp-form. In addition, a set of equations of motion is postulated directly in superspace, and is shown to agree with the Green-Schwarz equations of motion.Comment: revised version, minor changes, references added, 22 pages, no figures, LaTe

    Relativistic entanglement of two massive particles

    Full text link
    We describe the spin and momentum degrees of freedom of a system of two massive spin--12\tfrac{1}{2} particles as a 4 qubit system. Then we explicitly show how the entanglement changes between different partitions of the qubits, when considered by different inertial observers. Although the two particle entanglement corresponding to a partition into Alice's and Bob's subsystems is, as often stated in the literature, invariant under Lorentz boosts, the entanglement with respect to other partitions of the Hilbert space on the other hand, is not. It certainly does depend on the chosen inertial frame and on the initial state considered. The change of entanglement arises, because a Lorentz boost on the momenta of the particles causes a Wigner rotation of the spin, which in certain cases entangles the spin- with the momentum states. We systematically investigate the situation for different classes of initial spin states and different partitions of the 4 qubit space. Furthermore, we study the behavior of Bell inequalities for different observers and demonstrate how the maximally possible degree of violation, using the Pauli-Lubanski spin observable, can be recovered by any inertial observer.Comment: 17 pages, 4 figure

    Vacuum interpolation in supergravity via super p-branes

    Full text link
    We show that many of the recently proposed supersymmetric p-brane solutions of d=10 and d=11 supergravity have the property that they interpolate between Minkowski spacetime and a compactified spacetime, both being supersymmetric supergravity vacua. Our results imply that the effective worldvolume action for small fluctuations of the super p-brane is a supersingleton field theory for (adS)p+2(adS)_{p+2}, as has been often conjectured in the past.Comment: 8p

    The Cosmological Probability Density Function for Bianchi Class A Models in Quantum Supergravity

    Full text link
    Nicolai's theorem suggests a simple stochastic interpetation for supersymmetric Euclidean quantum theories, without requiring any inner product to be defined on the space of states. In order to apply this idea to supergravity, we first reduce to a one-dimensional theory with local supersymmetry by the imposition of homogeneity conditions. We then make the supersymmetry rigid by imposing gauge conditions, and quantise to obtain the evolution equation for a time-dependent wave function. Owing to the inclusion of a certain boundary term in the classical action, and a careful treatment of the initial conditions, the evolution equation has the form of a Fokker-Planck equation. Of particular interest is the static solution, as this satisfies all the standard quantum constraints. This is naturally interpreted as a cosmological probability density function, and is found to coincide with the square of the magnitude of the conventional wave function for the wormhole state.Comment: 22 pages, Late

    Complete loop quantization of a dimension 1+2 Lorentzian gravity theory

    Full text link
    De Sitter Chern-Simons gravity in D = 1 + 2 spacetime is known to possess an extension with a Barbero-Immirzi like parameter. We find a partial gauge fixing which leaves a compact residual gauge group, namely SU(2). The compacticity of the residual gauge group opens the way to the usual LQG quantization techniques. We recall the exemple of the LQG quantization of SU(2) CS theory with cylindrical space topology, which thus provides a complete LQG of a Lorentzian gravity model in 3-dimensional space-time.Comment: Loops11 - Madrid - 2011 (4 pages, Latex

    E10 and SO(9,9) invariant supergravity

    Full text link
    We show that (massive) D=10 type IIA supergravity possesses a hidden rigid SO(9,9) symmetry and a hidden local SO(9) x SO(9) symmetry upon dimensional reduction to one (time-like) dimension. We explicitly construct the associated locally supersymmetric Lagrangian in one dimension, and show that its bosonic sector, including the mass term, can be equivalently described by a truncation of an E10/K(E10) non-linear sigma-model to the level \ell<=2 sector in a decomposition of E10 under its so(9,9) subalgebra. This decomposition is presented up to level 10, and the even and odd level sectors are identified tentatively with the Neveu--Schwarz and Ramond sectors, respectively. Further truncation to the level \ell=0 sector yields a model related to the reduction of D=10 type I supergravity. The hyperbolic Kac--Moody algebra DE10, associated to the latter, is shown to be a proper subalgebra of E10, in accord with the embedding of type I into type IIA supergravity. The corresponding decomposition of DE10 under so(9,9) is presented up to level 5.Comment: 1+39 pages LaTeX2e, 2 figures, 2 tables, extended tables obtainable by downloading sourc

    Supersymmetric quantum cosmological billiards

    Full text link
    D=11 Supergravity near a space-like singularity admits a cosmological billiard description based on the hyperbolic Kac-Moody group E10. The quantization of this system via the supersymmetry constraint is shown to lead to wavefunctions involving automorphic (Maass wave) forms under the modular group W^+(E10)=PSL(2,O) with Dirichlet boundary conditions on the billiard domain. A general inequality for the Laplace eigenvalues of these automorphic forms implies that the wave function of the universe is generically complex and always tends to zero when approaching the initial singularity. We discuss possible implications of this result for the question of singularity resolution in quantum cosmology and comment on the differences with other approaches.Comment: 4 pages. v2: Added ref. Version to be published in PR

    String/(D−5)(D-5)-brane Duality and SS Duality as Symmetries of Actions

    Get PDF
    We realize the string/(D−5)(D-5)-brane duality on the action level between the T10−DT^{10-D}-compactified heterotic string effective action and the (D−5)(D-5)- brane effective action in DD dimensions by managing a Lagrange multiplier field. A dual dictionary is composed to be available for the translation between the elementary or solitonic solutions of the dual pair of actions. In the same way the SS duality is also reconstructed on the action level as a double dualization for the T6T^6-compactified heterotic string effective action.Comment: 9 pages, latex, no figure

    Duality in linearized gravity

    Full text link
    We show that duality transformations of linearized gravity in four dimensions, i.e., rotations of the linearized Riemann tensor and its dual into each other, can be extended to the dynamical fields of the theory so as to be symmetries of the action and not just symmetries of the equations of motion. Our approach relies on the introduction of two "superpotentials", one for the spatial components of the spin-2 field and the other for their canonically conjugate momenta. These superpotentials are two-index, symmetric tensors. They can be taken to be the basic dynamical fields and appear locally in the action. They are simply rotated into each other under duality. In terms of the superpotentials, the canonical generator of duality rotations is found to have a Chern-Simons like structure, as in the Maxwell case.Comment: 10 pages; introduction rewritten and references adde
    • …
    corecore