140 research outputs found

    Fiscal policies and the prices of labor: a comparison of the U.K. and U.S.

    Get PDF

    Histological findings of autoimmune hepatitis

    Get PDF
    Histology of autoimmune hepatitis (AIH), chronic active hepatitis, is characterized by portal inflammation with interface hepatitis. Although the basic histology of AIH is similar to that of virus-related chronic hepatitis, hepatitic changes are usually prominent in AIH compared with chronic viral hepatitis. Clinicopathological diagnosis of AIH requires exclusion of other causes of liver disease, including hepatitis virus, alcohol, drugs, metabolic disorders, and other autoimmune diseases. At present, some criteria systems considering clinicopathological findings are proposed to categorize patients as having either definite or probably/atypical AIH. Among the pathological items of a simplified AIH scoring system of the International AIH Group, in addition to evident chronic hepatitis with interface hepatitis and hepatic rosette formation, emperipolesis, indicating the close immunological interaction of lymphocytes and hepatocytes, is noted but is sometimes difficult to evaluate. In addition to classical AIH, showing chronic active hepatitis, some AIH patients show a clinically acute hepatitis-like clinical course. These patients have mostly acute exacerbation from chronic active AIH, but acute-onset AIH cases, which histologically exhibit diffuse lobular hepatitis and/or confluent necrosis including perivenular zonal necrosis (zone 3 necrosis, centrizonal necrosis), are also encountered. © 2014 Springer Japan. All rights reserved.(Book Chapter

    Association of bone morphogenetic protein-2 gene polymorphisms with susceptibility to ossification of the posterior longitudinal ligament of the spine and its severity in Chinese patients

    Get PDF
    A case–control study was conducted to examine the association between two single nucleotide polymorphisms (SNPs) in exon 2 of the bone morphogenetic protein-2 gene (BMP-2) and ossification of the posterior longitudinal ligament (OPLL), and to investigate whether SNPs of the Ser37Ala (T/G) and the Ser87Ser (A/G) in the BMP-2 gene are associated with genetic susceptibility to OPLL and its severity in Chinese subjects. The Ser87Ser (A/G) SNP has been implicated in bone mineral density (BMD) and increases the risk of OA in women. The Ser37Ala (T/G) SNP is associated with BMD and the rate of bone loss in osteoporosis and osteoporosis fractures. A total of 57 OPLL patients and 135 non-OPLL controls were studied. Radiographs of the cervical spine were analyzed to determine the presence and the severity of OPLL. The association of two SNPs with the occurrence and the extent of OPLL were statistically evaluated. There was a significant association between the Ser37Ala (T/G) polymorphism and the occurrence of OPLL in the cervical spine. However, no significant association was found between the Ser37Ala (T/G) polymorphism and the more number of ossified cervical vertebrae in OPLL patients. There was a significant association between the Ser87Ser (A/G) polymorphism and the more number of ossified cervical vertebrae in OPLL patients. However, there was no statistical difference between the Ser87Ser (A/G) SNP and the occurrence of OPLL in the cervical spine. In addition, the Ser87Ser (A/G) polymorphism in male patients and in female patients showed no statistical difference between cases and controls. The present results demonstrate that BMP-2 Gene is not only a factor associated with the occurrence of OPLL, but also a factor related to more extensive OPLL. The “G” allele in the Ser37Ala (T/G) polymorphism is associated with the occurrence of OPLL, but not more extensive OPLL in the cervical spine. The “G” allele in the Ser87Ser (A/G) polymorphism promotes the extent of OPLL, whereas the “A” allele in the Ser87Ser (A/G) polymorphism restricts ectopic ossification in the cervical spine at least in Chinese subjects

    Nephrin Regulates Lamellipodia Formation by Assembling a Protein Complex That Includes Ship2, Filamin and Lamellipodin

    Get PDF
    Actin dynamics has emerged at the forefront of podocyte biology. Slit diaphragm junctional adhesion protein Nephrin is necessary for development of the podocyte morphology and transduces phosphorylation-dependent signals that regulate cytoskeletal dynamics. The present study extends our understanding of Nephrin function by showing in cultured podocytes that Nephrin activation induced actin dynamics is necessary for lamellipodia formation. Upon activation Nephrin recruits and regulates a protein complex that includes Ship2 (SH2 domain containing 5′ inositol phosphatase), Filamin and Lamellipodin, proteins important in regulation of actin and focal adhesion dynamics, as well as lamellipodia formation. Using the previously described CD16-Nephrin clustering system, Nephrin ligation or activation resulted in phosphorylation of the actin crosslinking protein Filamin in a p21 activated kinase dependent manner. Nephrin activation in cell culture results in formation of lamellipodia, a process that requires specialized actin dynamics at the leading edge of the cell along with focal adhesion turnover. In the CD16-Nephrin clustering model, Nephrin ligation resulted in abnormal morphology of actin tails in human podocytes when Ship2, Filamin or Lamellipodin were individually knocked down. We also observed decreased lamellipodia formation and cell migration in these knock down cells. These data provide evidence that Nephrin not only initiates actin polymerization but also assembles a protein complex that is necessary to regulate the architecture of the generated actin filament network and focal adhesion dynamics

    Establishment of a Novel Fluorescence-Based Method to Evaluate Chaperone-Mediated Autophagy in a Single Neuron

    Get PDF
    Background: Chaperone-mediated autophagy (CMA) is a selective autophagy-lysosome protein degradation pathway. The role of CMA in normal neuronal functions and in neural disease pathogenesis remains unclear, in part because there is no available method to monitor CMA activity at the single-cell level. Methodology/Principal Findings: We sought to establish a single-cell monitoring method by visualizing translocation of CMA substrates from the cytosol to lysosomes using the HaloTag (HT) system. GAPDH, a CMA substrate, was fused to HT (GAPDH-HT); this protein accumulated in the lysosomes of HeLa cells and cultured cerebellar Purkinje cells (PCs) after labeling with fluorescent dye-conjugated HT ligand. Lysosomal accumulation was enhanced by treatments that activate CMA and prevented by siRNA-mediated knockdown of LAMP2A, a lysosomal receptor for CMA, and by treatments that inactivate CMA. These results suggest that lysosomal accumulation of GAPDH-HT reflects CMA activity. Using this method, we revealed that mutant cPKC, which causes spinocerebellar ataxia type 14, decreased CMA activity in cultured PCs. Conclusion/Significance: In the present study, we established a novel fluorescent-based method to evaluate CMA activity in a single neuron. This novel method should be useful and valuable for evaluating the role of CMA in various neurona
    corecore