1,189 research outputs found
Congested Traffic States in Empirical Observations and Microscopic Simulations
We present data from several German freeways showing different kinds of
congested traffic forming near road inhomogeneities, specifically lane
closings, intersections, or uphill gradients. The states are localized or
extended, homogeneous or oscillating. Combined states are observed as well,
like the coexistence of moving localized clusters and clusters pinned at road
inhomogeneities, or regions of oscillating congested traffic upstream of nearly
homogeneous congested traffic. The experimental findings are consistent with a
recently proposed theoretical phase diagram for traffic near on-ramps [D.
Helbing, A. Hennecke, and M. Treiber, Phys. Rev. Lett. {\bf 82}, 4360 (1999)].
We simulate these situations with a novel continuous microscopic single-lane
model, the ``intelligent driver model'' (IDM), using the empirical boundary
conditions. All observations, including the coexistence of states, are
qualitatively reproduced by describing inhomogeneities with local variations of
one model parameter.
We show that the results of the microscopic model can be understood by
formulating the theoretical phase diagram for bottlenecks in a more general
way. In particular, a local drop of the road capacity induced by parameter
variations has practically the same effect as an on-ramp.Comment: Now published in Phys. Rev. E. Minor changes suggested by a referee
are incorporated; full bibliographic info added. For related work see
http://www.mtreiber.de/ and http://www.helbing.org
Freezing by Heating in a Driven Mesoscopic System
We investigate a simple model corresponding to particles driven in opposite
directions and interacting via a repulsive potential. The particles move
off-lattice on a periodic strip and are subject to random forces as well. We
show that this model - which can be considered as a continuum version of some
driven diffusive systems - exhibits a paradoxial, new kind of transition called
here ``freezing by heating''. One interesting feature of this transition is
that a crystallized state with a higher total energy is obtained from a fluid
state by increasing the amount of fluctuations.Comment: For related work see
http://www.theo2.physik.uni-stuttgart.de/helbing.html and
http://angel.elte.hu/~vicsek
Steady state solutions of hydrodynamic traffic models
We investigate steady state solutions of hydrodynamic traffic models in the
absence of any intrinsic inhomogeneity on roads such as on-ramps. It is shown
that typical hydrodynamic models possess seven different types of inhomogeneous
steady state solutions. The seven solutions include those that have been
reported previously only for microscopic models. The characteristic properties
of wide jam such as moving velocity of its spatiotemporal pattern and/or
out-flux from wide jam are shown to be uniquely determined and thus independent
of initial conditions of dynamic evolution. Topological considerations suggest
that all of the solutions should be common to a wide class of traffic models.
The results are discussed in connection with the universality conjecture for
traffic models. Also the prevalence of the limit-cycle solution in a recent
study of a microscopic model is explained in this approach.Comment: 9 pages, 6 figure
An Agent-Based Approach to Self-Organized Production
The chapter describes the modeling of a material handling system with the
production of individual units in a scheduled order. The units represent the
agents in the model and are transported in the system which is abstracted as a
directed graph. Since the hindrances of units on their path to the destination
can lead to inefficiencies in the production, the blockages of units are to be
reduced. Therefore, the units operate in the system by means of local
interactions in the conveying elements and indirect interactions based on a
measure of possible hindrances. If most of the units behave cooperatively
("socially"), the blockings in the system are reduced.
A simulation based on the model shows the collective behavior of the units in
the system. The transport processes in the simulation can be compared with the
processes in a real plant, which gives conclusions about the consequencies for
the production based on the superordinate planning.Comment: For related work see http://www.soms.ethz.c
Macroscopic traffic models from microscopic car-following models
We present a method to derive macroscopic fluid-dynamic models from
microscopic car-following models via a coarse-graining procedure. The method is
first demonstrated for the optimal velocity model. The derived macroscopic
model consists of a conservation equation and a momentum equation, and the
latter contains a relaxation term, an anticipation term, and a diffusion term.
Properties of the resulting macroscopic model are compared with those of the
optimal velocity model through numerical simulations, and reasonable agreement
is found although there are deviations in the quantitative level. The
derivation is also extended to general car-following models.Comment: 12 pages, 4 figures; to appear in Phys. Rev.
Cooperation, Norms, and Revolutions: A Unified Game-Theoretical Approach
Cooperation is of utmost importance to society as a whole, but is often
challenged by individual self-interests. While game theory has studied this
problem extensively, there is little work on interactions within and across
groups with different preferences or beliefs. Yet, people from different social
or cultural backgrounds often meet and interact. This can yield conflict, since
behavior that is considered cooperative by one population might be perceived as
non-cooperative from the viewpoint of another.
To understand the dynamics and outcome of the competitive interactions within
and between groups, we study game-dynamical replicator equations for multiple
populations with incompatible interests and different power (be this due to
different population sizes, material resources, social capital, or other
factors). These equations allow us to address various important questions: For
example, can cooperation in the prisoner's dilemma be promoted, when two
interacting groups have different preferences? Under what conditions can costly
punishment, or other mechanisms, foster the evolution of norms? When does
cooperation fail, leading to antagonistic behavior, conflict, or even
revolutions? And what incentives are needed to reach peaceful agreements
between groups with conflicting interests?
Our detailed quantitative analysis reveals a large variety of interesting
results, which are relevant for society, law and economics, and have
implications for the evolution of language and culture as well
Maxwell Model of Traffic Flows
We investigate traffic flows using the kinetic Boltzmann equations with a
Maxwell collision integral. This approach allows analytical determination of
the transient behavior and the size distributions. The relaxation of the car
and cluster velocity distributions towards steady state is characterized by a
wide range of velocity dependent relaxation scales, , with
the ratio of the passing and the collision rates. Furthermore, these
relaxation time scales decrease with the velocity, with the smallest scale
corresponding to the decay of the overall density. The steady state cluster
size distribution follows an unusual scaling form . This distribution is primarily algebraic, , for , and is exponential otherwise.Comment: revtex, 10 page
Autonomous detection and anticipation of jam fronts from messages propagated by inter-vehicle communication
In this paper, a minimalist, completely distributed freeway traffic
information system is introduced. It involves an autonomous, vehicle-based jam
front detection, the information transmission via inter-vehicle communication,
and the forecast of the spatial position of jam fronts by reconstructing the
spatiotemporal traffic situation based on the transmitted information. The
whole system is simulated with an integrated traffic simulator, that is based
on a realistic microscopic traffic model for longitudinal movements and lane
changes. The function of its communication module has been explicitly validated
by comparing the simulation results with analytical calculations. By means of
simulations, we show that the algorithms for a congestion-front recognition,
message transmission, and processing predict reliably the existence and
position of jam fronts for vehicle equipment rates as low as 3%. A reliable
mode of operation already for small market penetrations is crucial for the
successful introduction of inter-vehicle communication. The short-term
prediction of jam fronts is not only useful for the driver, but is essential
for enhancing road safety and road capacity by intelligent adaptive cruise
control systems.Comment: Published in the Proceedings of the Annual Meeting of the
Transportation Research Board 200
Sustainable institutionalized punishment requires elimination of second-order free-riders
Although empirical and theoretical studies affirm that punishment can elevate
collaborative efforts, its emergence and stability remain elusive. By
peer-punishment the sanctioning is something an individual elects to do
depending on the strategies in its neighborhood. The consequences of
unsustainable efforts are therefore local. By pool-punishment, on the other
hand, where resources for sanctioning are committed in advance and at large,
the notion of sustainability has greater significance. In a population with
free-riders, punishers must be strong in numbers to keep the "punishment pool"
from emptying. Failure to do so renders the concept of institutionalized
sanctioning futile. We show that pool-punishment in structured populations is
sustainable, but only if second-order free-riders are sanctioned as well, and
to a such degree that they cannot prevail. A discontinuous phase transition
leads to an outbreak of sustainability when punishers subvert second-order
free-riders in the competition against defectors.Comment: 7 two-column pages, 3 figures; accepted for publication in Scientific
Report
Pedestrians moving in dark: Balancing measures and playing games on lattices
We present two conceptually new modeling approaches aimed at describing the
motion of pedestrians in obscured corridors:
* a Becker-D\"{o}ring-type dynamics
* a probabilistic cellular automaton model.
In both models the group formation is affected by a threshold. The
pedestrians are supposed to have very limited knowledge about their current
position and their neighborhood; they can form groups up to a certain size and
they can leave them. Their main goal is to find the exit of the corridor.
Although being of mathematically different character, the discussion of both
models shows that it seems to be a disadvantage for the individual to adhere to
larger groups. We illustrate this effect numerically by solving both model
systems. Finally we list some of our main open questions and conjectures
- …