4 research outputs found

    Dynamic model of supercritical Organic Rankine Cycle waste heat recovery system for internal combustion engine

    Get PDF
    The supercritical Organic Rankine Cycle (ORC) for the Waste Heat Recovery (WHR) from Internal Combustion (IC) engines has been a growing research area in recent years, driven by the aim to enhance the thermal efficiency of the ORC and engine. Simulation of a supercritical ORC-WHR system before a real-time application is important as high pressure in the system may lead to concerns about safety and availability of components. In the ORC-WHR system, the evaporator is the main contributor to thermal inertia of the system and is considered to be the critical component since the heat transfer of this device influences the efficiency of the system. Since the thermo-physical properties of the fluid at supercritical pressures are dependent on temperature, it is necessary to consider the variations in properties of the working fluid. The wellknown Finite Volume (FV) discretization method is generally used to take those property changes into account. However, a FV model of the evaporator in steady state condition cannot be used to predict the thermal inertia of the cycle when it is subjected to transient heat sources. In this paper, a dynamic FV model of the evaporator has been developed and integrated with other components in the ORC-WHR system. The stability and transient responses along with the performance of the ORC-WHR system for the transient heat source are investigated and are also included in this paper

    Investigation of waste heat recovery system at supercritical conditions with vehicle drive cycles

    Get PDF
    Waste heat recovery (WHR) for internal combustion engines in vehicles using Organic Rankine cycle (ORC) has been a promising technology. The operation of the ORC WHR system in supercritical conditions has a potential to generate more power output and thermal efficiency compared with the conventional subcritical conditions. However, in supercritical conditions, the heat transfer process in the evaporator, the key component of the ORC WHR system, becomes unpredictable as the thermo-physical properties of the working fluid change with the temperature. Furthermore, the transient heat source from the vehicle’s exhaust makes the operation of the WHR system difficult. We investigated the performance of the ORC WHR system at supercritical conditions with engine’s exhaust data from real city and highway drive cycles. The effects of operating variables, such as refrigerant flow rates, evaporator and condenser pressure, and evaporator outlet temperature, on the performance indicators of the WHR system in supercritical conditions were examined. Simulation of operating parameters and the boundary of the WHR system are also included in this paper

    Maternal contribution to ultrasound fetal measurements at mid-pregnancy

    Get PDF
    Background: Maternal variables are known contributors to fetal variables and can be assessed during pregnancy. Objective: To assess maternal contribution to some mid-pregnancy fetal ultrasound measurements. Materials and Methods: A prospective study involving 87 pregnant women scanned at 18–23 weeks of pregnancy was carried out. The fetal measurements were head circumference (HC), abdominal circumference (AC), femur length (FL), and biparietal diameter (BPD) while the maternal variables were age, parity, height, weight, and BMI. Results: There were intercorrelations between some maternal and fetal variables respectively. Parity correlated significantly with all the ultrasound fetal measurements (P .05). Significant correlation between parity and age remained the same with simple and partial correlations (P 6.7%). The generated models revealed HC having the highest standardized regression coefficient (b = 5.07;P < .05) while FL had the least (b = 1.08;P < .05). Conclusion: The results suggested that parity contributed significantly to fetal ultrasound measurements at mid-pregnancy while maternal height, weight, and BMI made no significant impact
    corecore