25 research outputs found

    Polyhedral units and network connectivity in calcium aluminosilicate glasses from high-energy x-ray diffraction

    Full text link
    Structure factors for Cax/2AlxSi1-xO2 glasses (x=0,0.25,0.5,0.67) extended to a wave vector of magnitude Q= 40 1/A have been obtained by high-energy x-ray diffraction. For the first time, it is possible to resolve the contributions of Si-O, Al-O and Ca-O coordination polyhedra to the experimental atomic pair distribution functions (PDF). It has been found that both Si and Al are four-fold coordinated and so participate in a continuous tetrahedral network at low values of x. The number of network breaking defects in the form of non-bridging oxygens (NBO's) increases slowly with x until x=0.5 (NBO's ~ 10% at x=0.5). By x=0.67 the network breaking defects become significant as evidenced by the significant drop in the average coordination number of Si. By contrast, Al-O tetrahedra remain free of NBO's and fully integrated in the Al/Si-O network for all values of x. Calcium maintains a rather uniform coordination sphere of approximately 5 oxygen atoms for all values of x. The results suggest that not only Si/Al-O tetrahedra but Ca-O polyhedra, too, play a role in determining the glassy structure

    Alumina Coatings as Protection against Corrosive Atmosphere

    No full text

    Bulk elastic properties, hardness and fatigue of calcium aluminosilicate glasses in the intermediate-silica range

    Get PDF
    Bulk elastic properties, hardness and fatigue of calcium aluminosilicate (CAS) glasses in the technically relevant region of the ternary with intermediate-silica fraction were determined by combining results of Vickers indentation, ultrasonic echography and Archimedian buoyancy at room temperature. Of three studied compositional series, the first series was along the meta-aluminous join, while in the two other series the molar fraction of SiO2 was kept constant. For the first series the elastic moduli and hardness show an almost linear increase with increasing SiO2 fraction. In contrast, increasing the CaO/SiO2 ratio at constant silica content results in a characteristic change when passing the meta-aluminous join. Elastic constants and hardness were lower at the percalcic than on the peraluminous side. Empirical models which relate bulk elastic moduli to internal energy, short-range inter-atomic forces and the packing density of their oxide constituents were found to be in agreement with the experimental data for meta-aluminous glasses, while deviations between the observed and predicted trends were evident for percalcic compositions. Empirical fatigue parameters such as the probability to initiate cracks after indentation reflect the bulk mechanical properties in the CAS system when conducted in inert atmosphere, but are otherwise clearly dominated by environmental effects

    Pulse EPR spectroscopy of Cu2+-doped inorganic glasses

    No full text

    Complex relations of properties and structural parameters of electrode glasses

    No full text
    corecore