9,864 research outputs found

    Faraday patterns in dipolar Bose-Einstein condensates

    Full text link
    Faraday patterns can be induced in Bose-Einstein condensates by a periodic modulation of the system nonlinearity. We show that these patterns are remarkably different in dipolar gases with a roton-maxon excitation spectrum. Whereas for non-dipolar gases the pattern size decreases monotonously with the driving frequency, patterns in dipolar gases present, even for shallow roton minima, a highly non trivial frequency dependence characterized by abrupt pattern size transitions, which are especially pronounced when the dipolar interaction is modulated. Faraday patterns constitute hence an optimal tool for revealing the onset of the roton minimum, a major key feature of dipolar gases.Comment: 4 pages, 10 figure

    Kelvon-roton instability of vortex lines in dipolar Bose-Einstein condensates

    Full text link
    The physics of vortex lines in dipolar condensates is studied. Due to the nonlocality of the dipolar interaction, the 3D character of the vortex plays a more important role in dipolar gases than in typical short-range interacting ones. In particular, the dipolar interaction significantly affects the stability of the transverse modes of the vortex line. Remarkably, in the presence of a periodic potential along the vortex line, a roton minimum may develop in the spectrum of transverse modes. We discuss the appropriate conditions at which this roton minimum may eventually lead to an instability of the straight vortex line, opening new scenarios for vortices in dipolar gases.Comment: 4 pages, 3 eps figure

    Coupling the Supersymmetric 210 Vector Multiplet to Matter in SO(10)

    Full text link
    An analysis of the couplings of the 210 dimensional SO(10) vector multiplet to matter is given. Specifically we give an SU(5)×U(1)SU(5)\times U(1) decomposition of the vector couplings 16ˉ±−16±−210\bar{16}_{\pm}-16_{\pm}-210, where 16±16_{\pm} is the semispinor of SO(10) chirality ±{\pm}, using a recently derived basic theorem. The analysis is carried out using the Wess-Zumino gauge. However, we also consider the more general situation where all components of the vector multiplet enter in the couplings with the chiral fields. Here elimination of the auxiliary fields leads to a sigma model type nonlinear Lagrangian. Interactions of the type analysed here may find applications in effective theories with the 210 vector arising as a condensate. The analysis presented here completes the explicit computation of all lowest order couplings involving the 16±16_{\pm} of spinors with Higgs and vectors multiplets using the basic theorem.Comment: 33 pages, Latex. To appear in Nuclear Physics
    • …
    corecore