4,845 research outputs found

    Interactions between Octet Baryons in the SU_6 Quark model

    Get PDF
    The baryon-baryon interactions for the complete baryon octet (B_8) are investigated in a unified framework of the resonating-group method, in which the spin-flavor SU_6 quark-model wave functions are employed. Model parameters are determined to reproduce properties of the nucleon-nucleon system and the low-energy cross section data for the hyperon-nucleon interaction. We then proceed to explore B_8 B_8 interactions in the strangeness S=-2, -3 and -4 sectors. The S-wave phase-shift behavior and total cross sections are systematically understood by 1) the spin-flavor SU_6 symmetry, 2) the special role of the pion exchange, and 3) the flavor symmetry breaking.Comment: 11 pages, 6 figures, submitted to Phys. Rev. C (Rapid Communication

    All-optical transport and compression of ytterbium atoms into the surface of a solid immersion lens

    Full text link
    We present an all-optical method to load 174Yb atoms into a single layer of an optical trap near the surface of a solid immersion lens which improves the numerical aperture of a microscope system. Atoms are transported to a region 20 um below the surface using a system comprised by three optical dipole traps. The "optical accordion" technique is used to create a condensate and compress the atoms to a width of 120 nm and a distance of 1.8 um away from the surface. Moreover, we are able to verify that after compression the condensate behaves as a two-dimensional quantum gas.Comment: 5 pages, 5 figure

    Quark-Model Baryon-Baryon Interaction and its Applications to Hypernuclei

    Full text link
    The quark-model baryon-baryon interaction fss2, proposed by the Kyoto-Niigata group, is a unified model for the complete baryon octet (B_8=N, Lambda, Sigma and Xi), which is formulated in a framework of the (3q)-(3q) resonating-group method (RGM) using the spin-flavor SU_6 quark-model wave functions and effective meson-exchange potentials at the quark level. Model parameters are determined to reproduce properties of the nucleon-nucleon system and the low-energy cross section data for the hyperon-nucleon scattering. Due to the several improvements including the introduction of vector-meson exchange potentials, fss2 has achieved very accurate description of the NN and YN interactions, comparable to various one-boson exchange potentials. We review the essential features of fss2 and our previous model FSS, and their predictions to few-body systems in confrontation with the available experimental data. Some characteristic features of the B_8 B_8 interactions with the higher strangeness, S=-2, -3, -4, predicted by fss2 are discussed. These quark-model interactions are now applied to realistic calculations of few-body systems in a new three-cluster Faddeev formalism which uses two-cluster RGM kernels. As for the few-body systems, we discuss the three-nucleon bound states, the Lambda NN-Sigma NN system for the hypertriton, the alpha alpha Lambda system for 9Be Lambda, and the Lambda Lambda alpha system for 6He Lambda Lambda.Comment: 20 pages, 12 figures, 18th Nishinomiya Yukawa Memorial Symposium on Strangeness in Nuclear Matter, 4 - 5 December 2003, Nishinomiya, Japan. (to be published in Prog. Theor. Phys. Suppl.

    Single-Particle Spin-Orbit Strengths of the Nucleon and Hyperons by SU6 Quark-Model

    Full text link
    The quark-model hyperon-nucleon interaction suggests an important antisymmetric spin-orbit component. It is generated from a color analogue of the Fermi-Breit interaction dominating in the one-gluon exchange process between quarks. We discuss the strength S_B of the single-particle spin-orbit potential, following the Scheerbaum's prescription. Using the SU6 quark-model baryon-baryon interaction which was recently developed by the Kyoto-Niigata group, we calculate NN, Lambda N and Sigma N G-matrices in symmetric nuclear matter and apply them to estimate the strength S_B. The ratio of S_B to the nucleon strength S_N =~ -40 MeV*fm^5 is (S_Lambda)/(S_N) =~ 1/5 and (S_Sigma)/(S_N) =~ 1/2 in the Born approximation. The G-matrix calculation of the model FSS modifies S_Lambda to (S_Lambda)/(S_N) =~ 1/12. For S_N and S_Sigma, the effect of the short-range correlation is comparatively weak against meson-exchange potentials with a short-range repulsive core. The significant reduction of the Lambda single-particle potential arises from the combined effect of the antisymmetric LS force, the flavor-symmetry breaking originating from the strange to up-down quark-mass difference, as well as the effect of the short-range correlation. The density dependence of S_B is also examined.Comment: 26 page
    corecore