5,710 research outputs found

    Bimaximal Mixings from the Texture of the Right-handed Majorana Neutrino Mass Matrix

    Get PDF
    We study the origin of neutrino masses and mixing angles which can accomodate the LMA MSW solutions of the solar neutrino anomaly as well as the solution of the atmospheric neutrino problem, within the framework of the see-saw mechanism. We employ the diagonal form of the Dirac neutrino mass matrices with the physical masses as diagonal elements in the hierarchical order. Such choice has been motivated from the fact that the known CKM angles for the quark sector, are relatively small. We consider both possibilities where the Dirac neutrino mass matrix is either the charged lepton or the up-quark mass matrix within the framework of SO(10) GUT with or without supersymmetry. The non-zero texture of the right-handed Majorana neutrino mass matrix MRM_{R} is used for the generation of the desired bimaximal mixings in a model independent way. Both hierarchical and inverted hierarchical models of the left-handed Majorana neutrino mass matrices are generated and then discussed with examples

    Eliminating the d=5 proton decay operators from SUSY GUTs

    Get PDF
    A general analysis is made of the question whether the d=5 proton decay operators coming from exchange of colored Higgsinos can be completely eliminated in a natural way in supersymmetric grand unified models. It is shown that they can indeed be in SO(10) while at the same time naturally solving the doublet-triplet splitting problem, having only two light Higgs doublets, and using no more than a single adjoint Higgs field. Accomplishing all of this requires that the vacuum expectation value of the adjoint Higgs field be proportional to the generator I_{3R} rather than to B-L, as is usually assumed. It is shown that such models can give realistic quark and lepton masses. We also point out a new mechanism for solving the \mu problem in the context of SO(10) SUSY GUTs.Comment: 24 pages in LaTeX, with 3 figure

    New vector-scalar contributions to neutrinoless double beta decay and constraints on R-parity violation

    Get PDF
    We show that in minimal supersymmetric standard model (MSSM) with R-parity breaking as well as in the left-right symmetric model, there are new observable contributions to neutrinoless double beta decay arising from hitherto overlooked diagrams involving the exchange of one W boson and one scalar boson. In particular, in the case of MSSM, the present experimental bounds on neutrinoless double beta decay lifetime improves the limits on certain R-parity violating couplings by about two orders of magnitude. It is shown that similar diagrams also lead to enhanced rates for μe+\mu^-\rightarrow e^+ conversion in nuclei, which are in the range accessible to ongoing experiments.Comment: Latex file; 9 pages; 3 figures available on reques

    Growth rate of YBCO single grains containing Y-2411(M)

    Get PDF
    Y-Ba-Cu-O (YBCO) single grains have the potential to generate large trapped magnetic fields for a variety of engineering applications, and research on the processing and properties of this material has attracted world-wide interest. In particular, the introduction of flux pinning centres to the large grain microstructure to improve its current density, Jc, and hence trapped field, has been investigated extensively over the past decade. Y 2Ba4CuMOx [Y-2411(M)], where M = Nb, Ta, Mo, W, Ru, Zr, Bi and Ag, has been reported to form particularly effective flux pinning centres in YBCO due primarily to its ability to exist as nano-size inclusions in the superconducting phase matrix. However, the addition of the Y-2411(M) phase to the precursor composition complicates the melt-processing of single grains. We report an investigation of the growth rate of single YBCO grains containing Y-2411(Bi) phase inclusions and Y2O3. The superconducting properties of these large single grains have been measured specifically to investigate the effect of Y2O3 on broadening the growth window of these materials

    Getting the Supersymmetric Unification Scale from Quantum Confinement with Chiral Symmetry Breaking

    Full text link
    Two models which generate the supersymmetric Grand Unification Scale from the strong dynamics of an additional gauge group are presented. The particle content is chosen such that this group confines with chiral symmetry breaking. Fields that are usually introduced to break the Grand Unified group appear instead as composite degrees of freedom and can acquire vacuum expectation values due to the confining dynamics. The models implement known solutions to the doublet-triplet splitting problem. The SO(10) model only requires one higher dimensional representation, an adjoint. The dangerous coloured Higgsino-mediated proton decay operator is naturally suppressed in this model to a phenomenologically interesting level. Neither model requires the presence of gauge singlets. Both models are only technically natural.Comment: LaTex, 23 page

    Low-energy formulas for neutrino masses with tanβ\tan \beta-dependent hierarchy

    Full text link
    Using radiative correction and seesaw mechanism,we derive analytic formulas for neutrino masses in SUSY unified theories exhibiting, for the first time, a new hierarchial relation among them.The new hierarchy is found to be quite significant especially for smaller values of tanβ\tan\beta.Comment: 10 pages,REVTEX, no figures,typographical errors rectifie

    Supersymmetry, local horizontal unification, and a solution to the flavor puzzle

    Get PDF
    Supersymmetric gauge models with local horizontal symmetries are known to generate large flavor changing neutral current effects induced by supersymmetry breaking D-terms. We show how the presence of a U(1) gauge symmetry solves this problem. We then construct a realistic gauge model with SU(2)_H x U(1)_H as the local horizontal symmetry and suggest that the U(1)_H factor may be identified with the anomalous U(1) induced by string compactification. This model explains the observed hierarchies among the quark masses and mixing angles, accommodates naturally the solar and atmospheric neutrino data, and provides simultaneously a solution to the supersymmetric flavor problem. The model can be excluded if the rare decay \mu --> e \gamma is not observed in the current round of experiments.Comment: 10 pages in RevTe

    Enhanced self-field critical current density of nano-composite YBa(2)Cu(3)O(7) thin films grown by pulsed-laser deposition

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ EPLA, 2008.Enhanced self-field critical current density Jc of novel, high-temperature superconducting thin films is reported. Layers are deposited on (001) MgO substrates by laser ablation of YBa2Cu3O7−δ(Y-123) ceramics containing Y2Ba4CuMOx (M-2411, M=Ag, Nb, Ru, Zr) nano-particles. The Jc of films depends on the secondary-phase content of the ceramic targets, which was varied between 0 and 15 mol%. Composite layers (2 mol% of Ag-2411 and Nb-2411) exhibit Jc values at 77 K of up to 5.1 MA/cm2, which is 3 to 4 times higher than those observed in films deposited from phase pure Y-123 ceramics. Nb-2411 grows epitaxially in the composite layers and the estimated crystallite size is ~10 nm.The Austrian Science Fund, the Austrian Federal Ministry of Economics and Labour, the European Science Foundation and the Higher Education Commission of Pakistan

    The Stability of the Gauge Hierarchy in SU(5)×SU(5)SU(5) \times SU(5)

    Full text link
    It has been shown that the Dimopoulos-Wilczek (or missing-VEV) mechanism for doublet-triplet splitting can be implemented in SU(5)×SU(5)SU(5) \times SU(5) models, which requires no adjoint Higgs fields. This is an advantage from the point of view of string theory construction. Here the stability of the gauge hierarchy is examined in detail, and it is shown that it can be guaranteed much more simply than in SO(10)SO(10). In fact a Z2Z_2 symmetry ensures the stability of the DW form of the expectation values to all orders in GUT-scale VEVs. It is also shown that models based on SO(10)×SU(5)SO(10) \times SU(5) have the advantages of SU(5)×SU(5)SU(5) \times SU(5) while permitting complete quark-lepton unification as in SO(10)SO(10).Comment: 13 pages, LaTe

    Neutrino Mass Hierarchy and neutron-anti-neutron Oscillation from Baryogenesis

    Full text link
    It has been recently proposed that the matter-antimatter asymmetry of the universe may have its origin in "post-sphaleron baryogenesis" (PSB). It is a TeV scale mechanism that is testable at the LHC and other low energy experiments. In this paper we present a theory of PSB within a quark-lepton unified scheme based on the gauge group SU(2)L×SU(2)R×SU(4)cSU(2)_L\times SU(2)_R\times SU(4)_c that allows a direct connection between the baryon asymmetry and neutrino mass matrix. The flavor changing neutral current constraints on the model allow successful baryogenesis only for an inverted mass hierarchy for neutrinos, which can be tested in the proposed long base line neutrino experiments. The model also predicts observable neutron--antineutron oscillation accessible to the next generation of experiments as well as TeV scale colored scalars within reach of LHC.Comment: 23 pages and seven figures; Fifure 4 replaced; references updated; typos correcte
    corecore