26,863 research outputs found
Symmetry Aspects in Nonrelativistic Multi-Scalar Field Models and Application to a Coupled Two-Species Dilute Bose Gas
We discuss unusual aspects of symmetry that can happen due to entropic
effects in the context of multi-scalar field theories at finite temperature. We
present their consequences, in special, for the case of nonrelativistic models
of hard core spheres. We show that for nonrelativistic models phenomena like
inverse symmetry breaking and symmetry non-restoration cannot take place, but a
reentrant phase at high temperatures is shown to be possible for some region of
parameters. We then develop a model of interest in studies of Bose-Einstein
condensation in dilute atomic gases and discuss about its phase transition
patterns. In this application to a Bose-Einstein condensation model, however,
no reentrant phases are found.Comment: 8 pages, 1 eps figure, IOP style. Based on a talk given by R. O.
Ramos at the QFEXT05 workshop, Barcelona, Spain, September 5-9, 2005. One
reference was update
Inverse Symmetry Breaking in Multi-Scalar Field Theories
We review how the phenomena of inverse symmetry breaking (and symmetry
nonrestoration) may arise in the context of relativistic as well as
nonrelativistic multi-scalar field theories. We discuss how the consideration
of thermal effects on the couplings produce different transition patterns for
both theories. For the relativistic case, these effects allow the appearance of
inverse symmetry breaking (and symmetry nonrestoration) at arbitrarily large
temperatures. On the other hand, the same phenomena are suppressed in the
nonrelativistic case, which is relevant for condensed matter physics. In this
case, symmetry nonrestoration does not happen while inverse symmetry is allowed
only to be followed by symmetry restoration characterizing a reentrant phase.
The aim of this paper is to give more insight concerning the, qualitatively
correct, results obtained by using one loop perturbation theory in the
evaluation of thermal masses and couplings.Comment: 7 pages, 3 figures, talk given at the workshop on Quantum Fields
Under the Influence of External Conditions, QFEXT05, Barcelona, sep-200
Generalized enthalpy model of a high pressure shift freezing process
High-pressure freezing processes are a novel emerging technology in food processing, offering significant improvements to the quality of frozen foods. To be able to simulate plateau times and thermal history under different conditions, in this work we present a generalized enthalpy model of the high-pressure shift freezing process. The model includes the effects of pressure on conservation of enthalpy and incorporates the freezing point depression of non-dilute food samples. In addition the significant heat transfer effects of convection in the pressurizing medium are accounted for by solving the two-dimensional Navier-Stokes equations. We run the model for several numerical tests where the food sample is agar gel, and find good agreement with experimental data from the literature
Medium-modified evolution of multiparticle production in jets in heavy-ion collisions
The energy evolution of medium-modified average multiplicities and
multiplicity fluctuations in quark and gluon jets produced in heavy-ion
collisions is investigated from a toy QCD-inspired model. In this model, we use
modified splitting functions accounting for medium-enhanced radiation of gluons
by a fast parton which propagates through the quark gluon plasma. The leading
contribution of the standard production of soft hadrons is found to be enhanced
by the factor while next-to-leading order (NLO) corrections are
suppressed by , where the nuclear parameter accounts for
the induced-soft gluons in the hot medium. The role of next-to-next-to-leading
order corrections (NNLO) is studied and the large amount of medium-induced soft
gluons is found to drastically affect the convergence of the perturbative
series. Our results for such global observables are cross-checked and compared
with their limits in the vacuum and a new method for solving the second
multiplicity correlator evolution equations is proposed.Comment: 21 pages and 8 figures, typo corrections, references adde
The type N Karlhede bound is sharp
We present a family of four-dimensional Lorentzian manifolds whose invariant
classification requires the seventh covariant derivative of the curvature
tensor. The spacetimes in questions are null radiation, type N solutions on an
anti-de Sitter background. The large order of the bound is due to the fact that
these spacetimes are properly , i.e., curvature homogeneous of order 2
but non-homogeneous. This means that tetrad components of are constant, and that essential coordinates first appear as
components of . Covariant derivatives of orders 4,5,6 yield one
additional invariant each, and is needed for invariant
classification. Thus, our class proves that the bound of 7 on the order of the
covariant derivative, first established by Karlhede, is sharp. Our finding
corrects an outstanding assertion that invariant classification of
four-dimensional Lorentzian manifolds requires at most .Comment: 7 pages, typos corrected, added citation and acknowledgemen
Modelling and optimization of the processing of a healthy snack bar made of grape and tomato pomaces
A snack made of 36% by-products of grape and tomato pomaces was developed, also including other ingredients such as oats, chia, quinoa, honey, and peanut butter. The recipe was defined as tasty and healthy by a focus group. The snack was produced by using forced air at three different drying temperatures (50 °C, 60 °C and 70 °C). The Newton, Page, Henderson & Pabis, and Midil-li-Kucuk models fit the drying curves well. The average values for the Newton’s model drying constants were: k50= 2.71x10-1 ± 3x10-3 min-1; k60= 2. 76x10-1 ± 4x10-3 min-1 and k70= 3.91x10-1 ± 8x10-3 min-1; at 50 °C, 60 °C and 70 °C, respectively. The product’s quality was assessed over storage, regarding water activity and texture (hardness, springiness, cohesiveness, chewiness and resilience). The three tested processing temperatures did not influence the final product’s quality differently. Since there are no significant differences between initial and final water activity and texture attributes for any temperature, and they were mainly unaltered over storage, the snack bar was considered stable during this period. This new snack which includes by-products from the food industry reduces food waste and contributes to a circular economy model, simultaneously presenting environmental and economic advantages.info:eu-repo/semantics/publishedVersio
- …