21,059 research outputs found

    Origins of ferromagnetism in transition-metal doped Si

    Get PDF
    We present results of the magnetic, structural and chemical characterizations of Mn<sup>+</sup>-implanted Si displaying <i>n</i>-type semiconducting behavior and ferromagnetic ordering with Curie temperature,T<sub>C</sub> well above room temperature. The temperature-dependent magnetization measured by superconducting quantum device interference (SQUID) from 5 K to 800 K was characterized by three different critical temperatures (T*<sub>C</sub>~45 K, T<sub>C1</sub>~630-650 K and T<sub>C2</sub>~805-825 K). Their origins were investigated using dynamic secondary mass ion spectroscopy (SIMS) and transmission electron microscopy (TEM) techniques, including electron energy loss spectroscopy (EELS), Z-contrast STEM (scanning TEM) imaging and electron diffraction. We provided direct evidences of the presence of a small amount of Fe and Cr impurities which were unintentionally doped into the samples together with the Mn<sup>+</sup> ions, as well as the formation of Mn-rich precipitates embedded in a Mn-poor matrix. The observed T*<sub>C</sub> is attributed to the Mn<sub>4</sub>Si<sub>7</sub> precipitates identified by electron diffraction. Possible origins of and are also discussed. Our findings raise questions regarding the origin of the high ferromagnetism reported in many material systems without a careful chemical analysis

    Partonic effects on anisotropic flows at RHIC

    Full text link
    We report recent results from a multiphase transport (AMPT) model on the azimuthal anisotropies of particle momentum distributions in heavy ion collisions at the Relativistic Heavy Ion Collider. These include higher-order anisotropic flows and their scaling, the rapidity dependence of anisotropic flows, and the elliptic flow of charm quarks.Comment: 7 pages, 5 figures, talk given at "Hot Quarks 2004", July 18-24, 2004, Taos Valley, NM, US

    Kinetic Roughening in Deposition with Suppressed Screening

    Full text link
    Models of irreversible surface deposition of k-mers on a linear lattice, with screening suppressed by disallowing overhangs blocking large gaps, are studied by extensive Monte Carlo simulations of the temporal and size dependence of the growing interface width. Despite earlier finding that for such models the deposit density tends to increase away from the substrate, our numerical results place them clearly within the standard KPZ universality class.Comment: nine pages, plain TeX (4 figures not included
    corecore