3,576 research outputs found
Turbulance boundary conditions for shear flow analysis, using the DTNS flow solver
The effects of different turbulence boundary conditions were examined for two classical flows: a turbulent plane free shear layer and a flat plate turbulent boundary layer with zero pressure gradient. The flow solver used was DTNS, an incompressible Reynolds averaged Navier-Stokes solver with k-epsilon turbulence modeling, developed at the U.S. Navy David Taylor Research Center. Six different combinations of turbulence boundary conditions at the inflow boundary were investigated: In case 1, 'exact' k and epsilon profiles were used; in case 2, the 'exact' k profile was used, and epsilon was extrapolated upstream; in case 3, both k and epsilon were extrapolated; in case 4, the turbulence intensity (I) was 1 percent, and the turbulent viscosity (mu(sub t)) was equal to the laminar viscosity; in case 5, the 'exact' k profile was used and mu(sub t) was equal to the laminar viscosity; in case 6, the I was 1 percent, and epsilon was extrapolated. Comparisons were made with experimental data, direct numerical simulation results, or theoretical predictions as applicable. Results obtained with DTNS showed that turbulence boundary conditions can have significant impacts on the solutions, especially for the free shear layer
The 3D Navier-Stokes analysis of a Mach 2.68 bifurcated rectangular mixed-compression inlet
The supersonic diffuser of a Mach 2.68 bifurcated, rectangular, mixed-compression inlet was analyzed using a three-dimensional (3D) Navier-Stokes flow solver. A two-equation turbulence model, and a porous bleed model based on unchoked bleed hole discharge coefficients were used. Comparisons were made with experimental data, inviscid theory, and two-dimensional Navier-Stokes analyses. The main objective was to gain insight into the inlet fluid dynamics. Examination of the computational results along with the experimental data suggest that the cowl shock-sidewall boundary layer interaction near the leading edge caused a substantial separation in the wind tunnel inlet model. As a result, the inlet performance may have been compromised by increased spillage and higher bleed mass flow requirements. The internal flow contained substantial waves that were not in the original inviscid design. 3D effects were fairly minor for this inlet at on-design conditions. Navier-Stokes analysis appears to be an useful tool for gaining insight into the inlet fluid dynamics. It provides a higher fidelity simulation of the flowfield than the original inviscid design, by taking into account boundary layers, porous bleed, and their interactions with shock waves
Strong suppression of superconductivity by divalent Ytterbium Kondo-holes in CeCoIn_5
To study the nature of partially substituted Yb-ions in a Ce-based Kondo
lattice, we fabricated high quality Ce_{1-x}Yb_xCoIn_5 epitaxial thin films
using molecular beam epitaxy. We find that the Yb-substitution leads to a
linear decrease of the unit cell volume, indicating that Yb-ions are divalent
forming Kondo-holes in Ce_{1-x}Yb_xCoIn_5, and leads to a strong suppression of
the superconductivity and Kondo coherence. These results, combined with the
measurements of Hall effect, indicate that Yb-ions act as nonmagnetic impurity
scatters in the coherent Kondo lattice without serious suppression of the
antiferromagnetic fluctuations. These are in stark contrast to previous studies
performed using bulk single crystals, which claim the importance of valence
fluctuations of Yb-ions. The present work also highlights the suitability of
epitaxial films in the study of the impurity effect on the Kondo lattice.Comment: 5 pages, 4 figure
Parametrics on 2D Navier-Stokes analysis of a Mach 2.68 bifurcated rectangular mixed-compression inlet
The supersonic diffuser of a Mach 2.68 bifurcated, rectangular, mixed-compression inlet was analyzed using a two-dimensional (2D) Navier-Stokes flow solver. Parametric studies were performed on turbulence models, computational grids and bleed models. The computer flowfield was substantially different from the original inviscid design, due to interactions of shocks, boundary layers, and bleed. Good agreement with experimental data was obtained in many aspects. Many of the discrepancies were thought to originate primarily from 3D effects. Therefore, a balance should be struck between expending resources on a high fidelity 2D simulation, and the inherent limitations of 2D analysis. The solutions were fairly insensitive to turbulence models, grids and bleed models. Overall, the k-e turbulence model, and the bleed models based on unchoked bleed hole discharge coefficients or uniform velocity are recommended. The 2D Navier-Stokes methods appear to be a useful tool for the design and analysis of supersonic inlets, by providing a higher fidelity simulation of the inlet flowfield than inviscid methods, in a reasonable turnaround time
Electrical detection of spin pumping: dc voltage generated by ferromagnetic resonance at ferromagnet/nonmagnet contact
We describe electrical detection of spin pumping in metallic nanostructures.
In the spin pumping effect, a precessing ferromagnet attached to a normal-metal
acts as a pump of spin-polarized current, giving rise to a spin accumulation.
The resulting spin accumulation induces a backflow of spin current into the
ferromagnet and generates a dc voltage due to the spin dependent conductivities
of the ferromagnet. The magnitude of such voltage is proportional to the
spin-relaxation properties of the normal-metal. By using platinum as a contact
material we observe, in agreement with theory, that the voltage is
significantly reduced as compared to the case when aluminum was used.
Furtheremore, the effects of rectification between the circulating rf currents
and the magnetization precession of the ferromagnet are examined. Most
significantly, we show that using an improved layout device geometry these
effects can be minimized.Comment: 9 pages, 11 figure
A comparative study of computational solutions to flow over a backward-facing step
A comparative study was conducted for computational fluid dynamic solutions to flow over a backward-facing step. This flow is a benchmark problem, with a simple geometry, but involves complicated flow physics such as free shear layers, reattaching flow, recirculation, and high turbulence intensities. Three Reynolds-averaged Navier-Stokes flow solvers with k-epsilon turbulence models were used, each using a different solution algorithm: finite difference, finite element, and hybrid finite element - finite difference. Comparisons were made with existing experimental data. Results showed that velocity profiles and reattachment lengths were predicted reasonably well by all three methods, while the skin friction coefficients were more difficult to predict accurately. It was noted that, in general, selecting an appropriate solver for each problem to be considered is important
Nonlocal magnetization dynamics in ferromagnetic heterostructures
Two complementary effects modify the GHz magnetization dynamics of nanoscale
heterostructures of ferromagnetic and normal materials relative to those of the
isolated magnetic constituents: On the one hand, a time-dependent ferromagnetic
magnetization pumps a spin angular-momentum flow into adjacent materials and,
on the other hand, spin angular momentum is transferred between ferromagnets by
an applied bias, causing mutual torques on the magnetizations. These phenomena
are manifestly nonlocal: they are governed by the entire spin-coherent region
that is limited in size by spin-flip relaxation processes. We review recent
progress in understanding the magnetization dynamics in ferromagnetic
heterostructures from first principles, focusing on the role of spin pumping in
layered structures. The main body of the theory is semiclassical and based on a
mean-field Stoner or spin-density--functional picture, but quantum-size effects
and the role of electron-electron correlations are also discussed. A growing
number of experiments support the theoretical predictions. The formalism should
be useful to understand the physics and to engineer the characteristics of
small devices such as magnetic random-access memory elements.Comment: 48 pages, 21 figures (3 in color
Gilbert Damping in Magnetic Multilayers
We study the enhancement of the ferromagnetic relaxation rate in thin films
due to the adjacent normal metal layers. Using linear response theory, we
derive the dissipative torque produced by the s-d exchange interaction at the
ferromagnet-normal metal interface. For a slow precession, the enhancement of
Gilbert damping constant is proportional to the square of the s-d exchange
constant times the zero-frequency limit of the frequency derivative of the
local dynamic spin susceptibility of the normal metal at the interface.
Electron-electron interactions increase the relaxation rate by the Stoner
factor squared. We attribute the large anisotropic enhancements of the
relaxation rate observed recently in multilayers containing palladium to this
mechanism. For free electrons, the present theory compares favorably with
recent spin-pumping result of Tserkovnyak et al. [Phys. Rev. Lett.
\textbf{88},117601 (2002)].Comment: 1 figure, 5page
Controllable Rashba spin-orbit interaction in artificially engineered superlattices involving the heavy-fermion superconductor CeCoIn5
By using a molecular beam epitaxy technique, we fabricate a new type of
superconducting superlattices with controlled atomic layer thicknesses of
alternating blocks between heavy fermion superconductor CeCoIn_5, which
exhibits a strong Pauli pair-breaking effect, and nonmagnetic metal YbCoIn_5.
The introduction of the thickness modulation of YbCoIn_5 block layers breaks
the inversion symmetry centered at the superconducting block of CeCoIn_5. This
configuration leads to dramatic changes in the temperature and angular
dependence of the upper critical field, which can be understood by considering
the effect of the Rashba spin-orbit interaction arising from the inversion
symmetry breaking and the associated weakening of the Pauli pair-breaking
effect. Since the degree of thickness modulation is a design feature of this
type of superlattices, the Rashba interaction and the nature of pair-breaking
are largely tunable in these modulated superlattices with strong spin-orbit
coupling.Comment: 5 pages, 4 figures, to be published in Phys. Rev. Let
- …