4 research outputs found

    Molecular-level understanding of protein adsorption at the interface between water and a strongly interacting uncharged solid surface

    Get PDF
    Although protein adsorption on solids is of immense relevance, experimental limitations mean there is still a remarkable lack of understanding of the adsorption mechanism, particularly at a molecular level. By subjecting 240+ molecular dynamics simulations of two peptide/water/solid surface systems to statistical analysis, a generalized molecular level mechanism for peptide adsorption has been identified for uncharged surfaces that interact strongly with the solution phase. This mechanism is composed of three phases: (1) biased diffusion of the peptide from the bulk phase toward the surface; (2) anchoring of the peptide to the water/solid interface via interaction of a hydrophilic group with the water adjacent to the surface or a strongly interacting hydrophobic group with the surface; and (3) lockdown of the peptide on the surface via a slow, stepwise and largely sequential adsorption of its residues, which we term 'statistical zippering'. The adsorption mechanism is dictated by the existence of water layers adjacent to the solid and orientational ordering therein. By extending the solid into the solution by ∼8 Å and endowing it with a charged character, the water layers ensure the peptide feels the effect of the solid at a range well beyond the dispersion force that arises from it, thus inducing biased diffusion from afar. The charging of the interface also facilitates anchoring of the peptide near the surface via one of its hydrophilic groups, allowing it time it would otherwise not have to rearrange and lockdown. Finally, the slowness of the lockdown process is dictated by the need for the peptide groups to replace adjacent tightly bound interfacial water. © 2014 American Chemical Society

    Characterizing the switching transitions of an adsorbed peptide by mapping the potential energy surface

    Get PDF
    Peptide adsorption occurs across technology, medicine, and nature. The functions of adsorbed peptides are related to their conformation. In the past, molecular simulation methods such as molecular dynamics have been used to determine key conformations of adsorbed peptides. However, the transitions between these conformations often occur too slowly to be modeled reliably by such methods. This means such transitions are less well understood. In the study reported here, discrete path sampling is used for the first time to study the potential energy surface of an adsorbed peptide (polyalanine) and the transition pathways between various stable adsorbed conformations that have been identified in prior work by two of the authors [Mijajlovic, M.; Biggs, M. J. J. Phys. Chem. C 2007, 111, 15839−15847]. Mechanisms for the switching of adsorbed polyalanine between the stable conformations are elucidated along with the energetics of these switches

    Free energy of adsorption for a peptide at a liquid/solid interface via nonequilibrium molecular dynamics

    No full text
    Protein adsorption is of wide interest including in many technological applications such as tissue engineering, nanotechnology, biosensors, drug delivery, and vaccine production among others. Understanding the fundamentals of such technologies and their design would be greatly aided by an ability to efficiently predict the conformation of an adsorbed protein and its free energy of adsorption. In the study reported here, we show that this is possible when data obtained from nonequilibrium thermodynamic integration (NETI) combined with steered molecular dynamics (SMD) is subject to bootstrapping. For the met-enkephalin pentapeptide at a water-graphite interface, we were able to obtain accurate predictions for the location of the adsorbed peptide and its free energy of adsorption from around 50 and 80 SMD simulations, respectively. It was also shown that adsorption in this system is both energetically and entropically driven. The free energy of adsorption was also decomposed into that associated with formation of the cavity in the water near the graphite surface sufficient to accommodate the adsorbed peptide and that associated with insertion of the peptide into this cavity. This decomposition reveals that the former is modestly energetically and entropically unfavorable, whereas the latter is the opposite in both regards to a much greater extent. © 2013 American Chemical Society

    Molecular-level understanding of the adsorption mechanism of a graphite-binding peptide at the water/graphite interface

    Get PDF
    The association of proteins and peptides with inorganic material has vast technological potential. An understanding of the adsorption of peptides at liquid/solid interfaces on a molecular-level is fundamental to fully realising this potential. Combining our prior work along with the statistical analysis of 100+ molecular dynamics simulations of adsorption of an experimentally identified graphite binding peptide, GrBP5, at the water/graphite interface has been used here to propose a model for the adsorption of a peptide at a liquid/solid interface. This bottom-up model splits the adsorption process into three reversible phases: biased diffusion, anchoring and lockdown. Statistical analysis highlighted the distinct roles played by regions of the peptide studied here throughout the adsorption process: the hydrophobic domain plays a significant role in the biased diffusion and anchoring phases suggesting that the initial impetus for association between the peptide and the interface may be hydrophobic in origin; aromatic residues dominate the interaction between the peptide and the surface in the adsorbed state and the polar region in the middle of the peptide affords a high conformational flexibility allowing strongly interacting residues to maximise favourable interactions with the surface. Reversible adsorption was observed here, unlike in our prior work focused on a more strongly interacting surface. However, this reversibility is unlikely to be seen once the peptide–surface interaction exceeds 10 kcal mol 1
    corecore