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ABSTRACT 

Peptide adsorption occurs across technology, medicine and nature. The functions of adsorbed 

peptides are related to their conformation. In the past, molecular simulation methods such as 

molecular dynamics have been used to determine key conformations of adsorbed peptides. 

However, the transitions between these conformations often occur too slowly to be modeled 

reliably by such methods. This means such transitions are less well understood. In the study 

reported here, discrete path sampling is used for the first time to study the potential energy 

surface of an adsorbed peptide (polyalanine) and the transition pathways between various stable 

adsorbed conformations that have been identified in prior work by two of the authors 

(Mijajlovic, M.; Biggs, M. J. J. Phys. Chem. C 2007, 111, 15839-15847). Mechanisms for the 

switching of adsorbed polyalanine between the stable conformations are elucidated along with 

the energetics of these switches. 

1 INTRODUCTION 

The interaction of peptides and proteins with solid surfaces has attracted significant attention 

over many years.1-3 Central to much of this prior work has been the application of peptide and 

protein adsorption in nanotechnology.4-6 For example, nanoparticles have been implicated in the 

denaturing of proteins in the human body, leading to toxicity.7 More positively, peptides may be 

used to form nanoparticle assemblies,8 or to functionalize nanomaterials for applications such as 

cancer diagnosis and treatment,9-11 biosensing12-14 and drug delivery.15 Peptide adsorption is also 

of relevance in biology and medicine. For example, it is implicated in the fouling and 

degradation of medical implants,16 and may play a role in the fibrillation of proteins associated 

with degenerative brain diseases such as Alzhemier’s.17-18 
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Given the widespread applications of peptide and protein adsorption, it is desirable to 

understand the molecular processes involved in this phenomenon. All-atom molecular dynamics 

has been widely used to study preferred structures of adsorbed peptides,19-20 and studies in recent 

years have succeeded in estimating the free energy of adsorption,21-23 and proposing mechanisms 

for the peptide adsorption process.24-26 However, all-atom molecular dynamics is only useful for 

adsorption events lasting up to the order of a microsecond, and as such, slower but no less 

important processes, such as the change in secondary structure of an already adsorbed peptide, 

are as yet less well understood.3,20 Up until the present time, these processes have only been 

investigated using spectroscopic experimental methods and coarse-grained simulations, which 

offer less definitive understanding than all-atom models.3,20 

Discrete path sampling27 is a promising all-atom methodology for investigating transitions 

between two conformations of a system that are too slow to be probed by all-atom molecular 

dynamics. In short, this approach involves finding stationary points on the potential energy 

surface (PES) – that is, the minima (stable configurations) and saddle points (maximum-energy 

transition states) – between two conformations of interest. Transition pathways are then 

approximated as sequences of stationary points between the desired endpoints, and rate constants 

may be estimated using occupational probabilities derived from harmonic densities of states.27-29 

This methodology has been applied to study the rearrangements of clusters30-31 and 

biomolecules32-34 in studies dating up to the recent past. However, to the best of our knowledge, 

it has not been used to investigate changes in conformation of adsorbed peptides. 

In a previous study35 in which molecular modeling was used to study the adsorption of 

polyalanine at gas-solid interfaces, some of the authors here showed that the polyalanine can take 

on one of the three helical structures illustrated in Figure 1 depending on the strength of the 
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solid-peptide interaction, and that switching occurs between these structures at specific solid-

peptide interaction strengths. In the study reported here, discrete path sampling was used to 

elucidate the transitions between these conformations within the vicinity of the switching points. 

The nature of the PES of the system was also explored as a function of the solid-peptide 

interaction strength. In this report, we first outline the molecular model and methods used along 

with the details of the study undertaken. The switching energies, transition paths and associated 

rate constants are then presented and discussed. The report ends with a summary of key 

conclusions and an outline of future work. 

 

Figure 1. (a) Top and side views of the three helical forms taken by 10-alanine depending upon 

the strength of the interaction between the peptide and the solid surface:35 (a) α-helix, which is 

found when the solid interacts weakly with the peptide (and also when in the gas phase); (b) 310-

helix, which is found when the solid interacts more strongly with the peptide; and (c) 27-helix, 

which is found when the interaction between the solid and peptide is high. The structures were 

generated using Visual Molecular Dynamics.36 
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2 METHODOLOGY 

2.1 MODEL 

The model is essentially composed of a molecular model of polyalanine above a solid surface. 

The details of this model were set to replicate those of Mijajlovic and Biggs.35 The polyalanine 

molecules were capped by an acetyl group (CH3CO) at the N-terminus and an amino-methyl 

group (NHCH3) at the C-terminus. Intramolecular interactions were modeled using the Amber94 

force field.37 

The interaction between the peptide and solid surface was modeled by the Steele potential:38 

𝐸𝐴𝑢 = 2𝜋𝜌∑∑𝜀𝑠𝑗𝜎𝑠𝑗
2 [
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where 𝑙 = 0,⋯ , 𝐿 − 1 is a counter over the layers of solid atoms in the surface up to the 

maximum, 𝐿, 𝜌 the density of atoms in each of the layers, ∆ the distance between the layers, 𝑧𝑗 

the perpendicular distance of peptide atom-𝑗 from the surface, and 𝜀𝑠𝑗 and 𝜎𝑠𝑗 the associated 

Lennard-Jones energy and length parameters, respectively. The solid surface parameters for Au 

[111], which are summarized in Table 1, were derived from the literature.39-40 Specifically, the 

Lorentz-Berthelot rules were used to calculate the surface Lennard-Jones parameters, 𝜀𝑠 and 𝜎𝑠, 

using the literature parameters for CH2 interacting with Au,39 and these same rules were then 

applied with the Amber94 force field parameters to calculate 𝜀𝑠𝑗 and 𝜎𝑠𝑗. A range of surface-

peptide interaction strengths, 𝐸𝑠, were investigated through a simple expedient of multiplying the 

potential energy arising from the Steele model by a factor, 𝐸𝑠 𝐸𝐴𝑢⁄ , which we call the surface 

energy ratio. 

Table 1. Steele model parameters for Au [111]. 

parameter value 
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𝜌 0.13886 atoms/Å2 

𝜀𝑠 0.0905 kcal/mol 

𝜎𝑠 3.359 Å 

∆ 2.3545 Å 

𝐿 2 

 

2.2 METHODS 

The study is split into two parts. The first, which essentially replicates the previous work 

reported in ref. 35 using a different method to identify the minimum energy polyalanine 

conformations, involved determining which of the three helix forms is the most favored for a 

range of surface energies. This then underpinned identification of the surface energies where 

switching between two helix forms occurs. 

The minimum energy polyalanine conformations and associated energy were identified for 

each of the helix forms as follows. Using a canonical form of the helix in question – either α-, 

310- or 27-helix – the limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm41 

was used to find the minimum energy conformation starting from 1296 initial conformations that 

were generated by systematically varying the two angles defined in Figure 2 by increments of 

10° between the possible limits (where this process resulted in a peptide atom being within 1Å of 

the surface, the peptide was shifted normal to the surface until this minimum distance was 

satisfied). The canonical forms of the α-, 310- and 27-helixes were generated by setting all the 

backbone dihedral angles to (ψ = –60°, ϕ = –45°), (–55°, –15°) and (–75°, 70°), respectively. 

The most favored helix form for a given surface energy is that identified as having the lowest 

potential energy for the surface energy. The switching point between two helix forms is that 

surface energy where the energies of two different forms are identical. 
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Figure 2. The angles, α and β, that were varied to generate initial adsorbed polyalanine 

configurations. The atoms shown belong to the residue nearest to the N-terminus. The viewing 

plane contains the N–Cα bond and is perpendicular to the surface. The labeled lines are (1) 

parallel to the surface in the viewing plane, (2) perpendicular to the N–Cα bond in the viewing 

plane, and (3) normal to both bonds. 

The second part of the study reported here was concerned with identifying the switching 

pathway and associated energy barrier for the two switches (i.e. α→310 and 310→27). As 

illustrated in the flow diagram shown in Figure S1 in the Supporting Information, this involved 

the application of discrete path sampling27 to extensively enumerate the stationary points (i.e. 

minima and saddle points) on the PES of the systems in the vicinity of the switching points and 

the pathways between them. The details of this process are outlined in the remainder of this 

section below. 

The iterative enumeration of stationary points and pathways between them for a PES started by 

repeatedly using basin-hopping42 combined with simulated annealing (SA-BH) to expand the 

database of minima identified through the first part of this study. SA-BH involves randomly 

perturbing all backbone dihedral angles up to a maximum followed by relaxing the resulting 

structure using the LBFGS algorithm.41 The Metropolis criterion is then applied to determine 

whether to accept or reject the step, and this procedure is repeated for a specified number of 
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steps. The SA component of the algorithm sees the temperature used in application of the 

Metropolis criterion gradually reduce over the course of the simulation from an initial high 

value. The maximum step change in the dihedral angles was initially set at 360° and then 

adjusted regularly to maintain an acceptance ratio of 0.5. 

Following considerable expansion of the minima database using SA-BH, a variety of selection 

schemes were used to choose pairs of minima to be used as starting points for a saddle point 

search. Details of the saddle point searches are provided in the following paragraph. Firstly, the 

DIJINIT43 scheme was used to iteratively construct a putative pathway of connected stationary 

points between the minima associated with the two helix forms that define the switch being 

considered. Once this putative pathway was established, further selection schemes were applied 

iteratively to find additional stationary points that may be used to construct more energetically 

accessible pathways between the endpoint minima. These schemes included SHORTCUT,44 

DIJPAIR45 and UNTRAP,45 which all attempt to shorten the putative minimum energy pathway 

and decrease the energy barrier, by finding unknown stationary points near the pathway. The 

NEWCONNECTIONS46 scheme was also employed, which iteratively selects each known 

minimum below the energy barrier of the current minimum energy pathway and applies a small 

random perturbation. An additional scheme, which we call CONNUSERMIN, was also used in 

this study to connect a user-specified list of minima with their closest neighbors in Euclidean 

space; this was used to cross-check the putative pathways between the same helix forms at 

different surface energies, ensuring structures along the transition path at one surface energy 

ratio were adequately sampled at the others. 

The identification of saddle points between pairs of minima first involved use of the doubly 

nudged elastic band (DNEB) method47 to identify saddle point candidates between the two 
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chosen minima. Each candidate was then in turn refined using eigenvector following.48 

Following the precise location of a saddle point, the LBFGS algorithm was once again used to 

identify the two minima adjacent to the saddle point; if any of these minima were previously 

unknown, they were added to the database of stationary points. When using the 

NEWCONNECTIONS scheme, the DNEB method was skipped entirely and eigenvector 

following was applied directly to the perturbed minimum. 

After applying any given scheme, the KSHORTESTPATHS algorithm49 was used to 

determine the lowest energy pathway and calculate the rate constant.29 The refining of the 

putative switching pathway continued until the change in the rate constant of the minimum 

energy pathway between the two forms of helix of interest did not substantially change with the 

number of discovered minima. As illustrated in Figure S2 in Supporting Information, the rate of 

change of the rate constant with the number of discovered minima approached zero for both 

switches, suggesting that the PES were well-mapped near the helixes of interest and the limiting 

rate constants can be associated with the switching pathway. 

The various algorithms mentioned above were accessed using the software of Wales and co-

workers, which is freely available on their website.46 A summary of these algorithms and 

schemes is given in the Supporting Information. Their usage is this study required interfacing the 

software with the CHARMM program,50 which was used to evaluate the potential energy for a 

given peptide conformation. The CHARMM program was modified to include the Steele 

potential. 

2.3 STUDY DETAILS 

As per the authors’ previous study,35 polyalanine molecules of length ranging from 6 to 12 

residues were considered for surface energies ranging from 𝐸𝑠 𝐸𝐴𝑢⁄ = 0.0 (i.e. gas-phase 



 10 

polyalanine) to 𝐸𝑠 𝐸𝐴𝑢⁄ = 5.5 at increments of 0.1. The structures obtained from minimization 

were classified as α-, 310- or 27-helixes or otherwise, under the criterion that at least two thirds of 

the residues must have both backbone dihedral angles within ±20° of the values associated with 

the canonical values given above. 

The α→310 and 310→27 transitions were each studied for 10-alanine at three surface energy 

ratios near to the switching point. The multiple energies were studied to investigate whether 

there were any significant changes to the transition pathways either side of the switching point. 

Each SA-BH simulation was run for a total of 50,000 steps, with an initial temperature of 

𝑘𝐵𝑇 = 5.0 kcal/mol, which was decremented by 8 × 10−3% after each step. The maximum step 

size was adjusted up or down by 5% every 50 steps if the acceptance ratio for the last 50 steps 

was greater than or less than 0.5, respectively.  

The DNEB method was applied with 10 images and a maximum of 300 iterations. The LBFGS 

algorithm, which was used in both the DNEB and eigenvector following methods, was 

implemented with a memory of the last 4 iterations, a maximum step size of 0.4, initial guesses 

for the diagonals of the Hessian matrix of 0.1, and a convergence criterion of the RMS gradient 

not exceeding 107. 

Perturbations to minima for the NEWCONNECTIONS scheme were randomized to a 

maximum of 0.01 Å for each Cartesian coordinate. Paths and rate constants calculated using the 

KSHORTESTPATHS algorithm were evaluated at a temperature of 𝑘𝐵𝑇 = 0.3 kcal/mol. 

3 RESULTS AND DISCUSSION 

3.1 SWITCHING BEHAVIOUR OF POLYALANINE MOLECULES 

Figure 3 shows for 10-alanine the variation of the potential energy of the minimum-energy α-, 

310- and 27- helixes with the surface energy ratio; the variation is similar for the other polyalanine 
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molecules investigated here. The helix structure with the lowest energy for a given surface 

energy ratio is the most favored at that surface energy. Thus, in line with our previous study,35 

the α-helix is the most favored in the absence of the surface (i.e. in the gas phase) and when the 

solid surface interacts weakly with the peptide, the 27-helix is preferred at the highest surface 

energies investigated here, and the 310-helix is favored for energies between these two extremes. 

There are two switching points: where the α- and 310-helixes are equally favored at a low surface 

energy ratio, and where the 310- and 27-helixes are equally favored at a high surface energy ratio. 

For 10-alanine, the α→310 switching point is 𝐸𝑠 𝐸𝐴𝑢⁄ = 0.121, whilst that of the 310→27 switch 

is 𝐸𝑠 𝐸𝐴𝑢⁄ = 4.400. 

 

Figure 3. Variation of the potential energy of the α-, 310- and 27-helix structures of 10-alanine 

with the surface energy ratio. Insets show the behavior near the α→310 and 310→27 switching 

points. Lines shown in the insets are used to locate the switching points, which are at the 

intersections of the lines indicated by the arrows. 

Figure 4 shows the switching point surface energies as a function of the size of the polyalanine 

molecule. The variation seen in this figure is similar to that obtained by Mijajlovic and Biggs 

(Figure 9(a) in their work).35 However, there are two clear differences. The first is the preference 
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for the 310-helix in the gas phase and lower surface energies when the number of residues drops 

below 10. This preference in the gas phase for short polyalanines is not inconsistent with earlier 

results of others.51-52 It is also in line with the work of Park and Goddard,53 who showed that 

polyalanine α-helixes are stabilized by dipole-dipole interaction energy that increases with the 

number of residues. This result is corroborated by other studies that show α-helical global 

minima for long polyalanines.54-57 More recently, studies of polyalanine and polyalanine 

derivatives adsorbing on solid surfaces have indicated the formation of α-helixes through 

simulation (via a course-grained Monte Carlo study),58 and both α-helixes59-60 and 310-helixes60 

through experiment (via synthesis of self-assembled monolayers), although it must be noted that 

none of these studies precisely replicate the system studied here. The second difference between 

the results obtained here and those of Mijajlovic and Biggs35 is the absolute values of the 

switching energies: they are significantly higher and lower for 310→27 and α→310 switches, 

respectively.  

 

Figure 4. Variation of the switching surface energy ratio with the polyalanine length for the 

α→310 and 310→27 switches. 
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The differences observed between the results obtained in the study reported here and the study 

of Mijajlovic and Biggs35 are easily explained by one fundamental difference in the 

methodologies used. While the force field and surface models are identical, Mijajlovic and Biggs 

constrained the bond lengths and angles during the energy minimization, varying only the 

dihedral angles (via an evolutionary algorithm). In the study reported here, on the other hand, 

bond lengths and angles were free to change as all atoms were permitted to move freely when 

minimizing the structures. The additional localized flexibility means the same three structures 

are preferred as the surface energy increases but the energies at which they are preferred are 

shifted relative to when the flexibility is absent. 

3.2 POTENTIAL ENERGY SURFACES FOR 10-ALANINE 

Based on the switching points determined for 10-alanine, the PES for this molecule were 

investigated in detail along with the switching transitions for surface energy ratios of 𝐸𝑠 𝐸𝐴𝑢⁄ =

0.0, 0.1 and 0.2, which bracket the α→310 transition, and 𝐸𝑠 𝐸𝐴𝑢⁄ = 4.2, 4.4 and 4.6, which 

straddle the 310→27 transition. Error! Reference source not found. shows the disconnectivity 

graphs61 for 𝐸𝑠 𝐸𝐴𝑢⁄ = 0.0, 0.1 and 4.4; corresponding graphs for the other surface energy ratios 

investigated are shown in Figure S3 in Supporting Information. It is immediately obvious from 

these graphs that the presence of the solid surface greatly increases the complexity of the PES of 

the system, a phenomenon that has previously been noted as an obstacle to studies of peptide-

surface interactions.62 It is also clear that the degree of complexity broadly increases with the 

strength of the peptide-surface interaction. This is reflected in Table 2, which shows the number 

of minima and saddle points identified through the work reported here. Whilst the number of 

points identified for each surface energy ratio are considerable, the fact that the solid surface 

‘roughens’ the PES means comprehensive enumeration of all stationary points is unrealistic.62 
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However, as outlined in Section 2.2, given the variety of methods used to survey the PES and the 

convergence of the rate constant of the preferred switching pathway with the number of 

discovered minima, we are confident that the pathways between the three helix forms of interest 

here have been comprehensively sampled. 
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Figure 5. Disconnectivity graphs showing the lowest minima found for 10-alanine at surface 

energy ratios of: (a) 𝐸𝑠 𝐸𝐴𝑢⁄ = 0.0; (b) 𝐸𝑠 𝐸𝐴𝑢⁄ = 0.1 and (c) 𝐸𝑠 𝐸𝐴𝑢⁄ = 4.4. The minima 

corresponding to the minimum-energy α- (magenta), 310- (blue) and 27-helices (cyan) are 

highlighted. 

Table 2. Number of stationary points discovered for the PES of 10-alanine when in the gas phase 

and adsorbed on surfaces of various surface energies considered in detail here. 

surface energy 

ratio, 𝐸𝑠 𝐸𝐴𝑢⁄  

number of 

minima saddles 

0.0 6364 8288 

0.1 6448 9064 

0.2 7194 10116 

4.2 28361 38331 

4.4 24791 32825 

4.6 25681 33357 

 

The termini in the disconnectivity graphs correspond to minima whilst the nodes represent the 

energy barrier between two minima or groups of minima.61 The appearance of a graph can then 

be used to draw inferences about the underlying PES.63 The gas-phase disconnectivity graph 

shown in Error! Reference source not found.(a) exhibits a classic ‘funnel’ structure with a 

number of shallow minima guiding the system down to the global minimum α-helix. The 310-

helix is one of those ‘guiding’ minima, separated by a small energy barrier. Error! Reference 

source not found.(b), which displays the graph at a low surface energy, 𝐸𝑠 𝐸𝐴𝑢⁄ = 0.1, where 

the α- and 310-helixes are favored, is similarly shaped to the gas-phase graph but with a number 

of minima of similar energies, corresponding to these helixes at different orientations to the 
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surface. The lower part of this graph resembles the ‘banyan tree’ structure proposed by Wales 

and co-workers,63 and indicates that at any time the molecule may take any of these structures 

with similar probabilities. 

Error! Reference source not found.(c) shows the disconnectivity graph at a high surface 

energy, 𝐸𝑠 𝐸𝐴𝑢⁄ = 4.4, at which the 310- and 27-helixes have similar energies. This exhibits a 

multi-funnel structure with the most prominent funnel leading down to the 27-helix. Another 

funnel contains the 310-helix along with another competing minimum, which represents a stable 

310/27 hybrid we will return to below. There are several further funnels that indicate other forms 

10-alanine may possibly take, albeit with higher potential energy. The relative wideness of the 

27-funnel indicates that the 27-helix may be more favored when entropy is taken into 

consideration. 

Comparing Error! Reference source not found.(b-c) with the corresponding graphs in Figure 

S3 indicates the PES do not change dramatically as the switching points are crossed. This 

suggests that the switching mechanism will be similar in either direction (i.e. from 310→27 and 

from 27→310, for example) and, thus, are not ratchet-like. This absence of a ratchet-like 

switching may well arise from the symmetry64 of polyalanine. This possibility could potentially 

be revealed by applying the analysis undertaken here to helix-forming asymmetric peptides. 

3.3 SWITCHING TRANSITIONS FOR 10-ALANINE 

The transition path identified for the change between the α-helix and 310-helix at 𝐸𝑠 𝐸𝐴𝑢⁄ = 0.1 

is illustrated in Figure 6, with inset figures showing major intermediates and transition states. 

The switch from the marginally more favored α-helix structure to the 310-helix was found to 

occur in three distinct stages. Firstly, the α-helix rolls about its longitudinal axis to assume a 

slightly less stable position on the surface, but one from which the 310-helix is more readily 
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accessible (stage I): the 3rd and 7th residues are nearest to the surface, compared to the starting 

structure where the 4th and 8th residues are nearest. In the next step, the two turns closest to the 

N-terminus switch from an α to a 310 configuration, forming a marginally stable intermediate 

between the two helixes (stage II). Finally, the remaining α-helical residues, which are adjacent 

to the C-terminus, switch to yield a full 310-helix (stage III); it is this stage that presents the 

highest potential energy barrier in this switching process. 

 

Figure 6. Variation of the potential energy along the transition pathway between the α-helix 

(magenta) and 310-helix (blue) at 𝐸𝑠 𝐸𝐴𝑢⁄ = 0.1 and images of selected structures along the path, 

viewed from above the surface. The reference potential energy is that of the minimum-energy α-

helix adsorbed on the surface. The path distance is the minimized Euclidean distance between 

neighboring stationary points. Lines between stationary points are provided as a guide to the eye 

only. 
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The paths for the transitions identified at 𝐸𝑠 𝐸𝐴𝑢⁄ = 0.0 (gas-phase 10-alanine) and 𝐸𝑠 𝐸𝐴𝑢⁄ =

0.2, which are shown in Supporting Information (Figures S4 and S5), are similar in nature, 

although stage I is omitted in the gas-phase transition for obvious reasons. These figures reveal 

that the path length increases with the surface energy ratio, in line with the increase in the 

complexity of the PES (see above). 

The transition path identified for the change between the 310-helix and 27-helix at 𝐸𝑠 𝐸𝐴𝑢⁄ =

4.4 is shown in Figure 7, again with inset figures showing intermediate structures. This path is 

more complex than that for the α→310 switch at lower surface energy, and involves a number of 

small changes in conformation with, in many cases, high potential energy barriers in between. 

However, as with the α→310 switch, a three-stage mechanism is apparent, punctuated by two 

notable intermediates between the helixes. Firstly, the 310 structure closest to the C-terminus 

becomes two 27-helix turns, forming a 310/27 hybrid of comparable stability to the pure helixes 

(stage I). Secondly, the remainder of the 310-helix, near the N-terminus, also switches to 27, but 

coiling in the middle of the structure produces a moderately stable ‘broken’ 27-helix (stage II). 

Finally, the segment near the N-terminus flips upside down, producing a full 27-helix (stage III). 

The highest energy barrier occurs at the final stage, although the energy barriers of all three 

stages are comparable. 
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Figure 7. Variation of the potential energy along the transition pathway between the 310-helix 

(blue) and 27-helix (cyan) at 𝐸𝑠 𝐸𝐴𝑢⁄ = 4.4 and images of selected structures along the path, 

viewed from above the surface. The reference potential energy is that of the minimum-energy 

310-helix adsorbed on the surface. The path distance is the minimized Euclidean distance 

between neighboring stationary points. Lines between stationary points are provided as a guide 

to the eye only. 

Corresponding figures for the transitions identified for 𝐸𝑠 𝐸𝐴𝑢⁄ = 4.2 and 4.6 are provided in 

Supporting Information (Figures S6 and S7). These show the same three-stage process identified 

here. As with the α→310 switching transition, the path length appears to increase with the surface 
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energy ratio. Also, for 𝐸𝑠 𝐸𝐴𝑢⁄ = 4.6, the highest energy barrier occurs in stage II, possibly due 

to the improved stability of 27-helical structures at the greater surface energy ratio. 

It is evident from the results outlined above that the switch from the 310-helix to the 27-helix is 

significantly more impeded than the α→310 switch; the transition path is approximately six times 

as long and the energy barrier about five times as great. The rate constants, which were evaluated 

using transition state theory incorporating local harmonic densities of states,27 quantify in a more 

direct way the differences in the timescales of each switch. The rate constants for α→310 

switching both in the gas phase and at 𝐸𝑠 𝐸𝐴𝑢⁄ = 0.1, which are shown in Figure 8 as a function 

of temperature, are greater than 108 s-1 for temperatures above 200K. This corresponds to a mean 

transition time of up to a few nanoseconds, which is well within the capabilities of molecular 

dynamics simulation.20 It is worth noting that an early molecular dynamics study of gas-phase 

10-alanine at 300 K yielded a switch from 310 to α in a few picoseconds,54 which corresponds 

well with our results here. It is also notable that the rates are slower in the presence of the surface 

by about an order of magnitude, despite the surface favoring the formation of 310-helixes; this is 

possibly another consequence of the increasing complexity of the PES. 
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Figure 8. Variation of the rate constants with temperature for the switching transitions at 

𝐸𝑠 𝐸𝐴𝑢⁄ = 0.0, 0.1 and 4.4. 

The rate constants for 310→27 switching at 𝐸𝑠 𝐸𝐴𝑢⁄ = 4.4 are far lower than for α→310 

switching. Even at the maximum temperature sampled of 500 K, the rate constant of 

approximately 103 s-1 corresponds to a transition time of about a millisecond, which conventional 

molecular dynamics simulations cannot currently reach. It should be noted that only the rate 

constant for the most preferred path from the higher-energy minimum to the lower-energy 

minimum was considered; in reality, the transition is reversible and there are other transition 

paths and competing structures that would complicate the process and potentially lengthen the 

necessary simulation timescales. 

3.4 APPROXIMATE ANALYSIS OF COMPUTATIONAL EFFORT 

Because DPS is generally adopted when MD simulation is unable to probe the necessary 

timescales within a reasonable level of computational resource,27 it is worthwhile discussing the 

effort required to generate the results here. For a system of the size considered here, a full saddle 

point search incorporating the DNEB and eigenvector following methods took up to a few 

minutes on a single core of an AMD Opteron 6212 CPU. Thus, to construct a database of the size 

of those found in this study (c.f. Table 2), at least a few thousand core hours are necessary, and 

this is further increased by the finding of redundant minima and saddle points, and the extra time 

taken to read and manage a large database. A conservative estimate of the computational time 

required is, therefore, around 10,000 core hours. This compares unfavorably with MD for the 

α→310 switch, where MD simulations of the order of 5 core hours on these Opteron CPUs would 

be sufficient. In the case of the 310→27 switch, on the other hand, the MD simulations time 

would increase to the order of 10 million core hours even at 500K, making it entirely 
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impractical; DPS is the only viable option. Although the computational time for DPS compares 

unfavorably for simpler systems such as the ones we considered here at lower surface energies, it 

is worth noting that this form of analysis is embarrassingly parallelizable (many saddle point 

searches can be run essentially independently) and it can yield insights that are difficult to gain 

from MD alone as demonstrated by the present study. 

A related point of discussion is how DPS scales with the size of the adsorbed peptide. It is 

known that the number of stationary points on a potential energy surface generally has an 

exponential relationship with the size of the system.65 This study also demonstrates the effect of 

the surface in increasing the complexity of the potential energy surface. This suggests that 

although larger biomolecules have been studied using DPS in the past,33 studying the adsorption 

of such molecules may present greater challenges. Further study will, however, be required 

before this is fully understood. 

4 CONCLUSIONS 

Three known helical structures formed by polyalanine at a gas/solid interface were subjected to 

energy minimization and compared. In agreement with past findings,35 a switching phenomenon 

was observed from α-helix to 310-helix to 27-helix, in order of increasing strength of the surface-

peptide interaction. A discrete path sampling procedure was used to investigate this switching 

process for 10-alanine, and general stage-by-stage mechanisms for the α→310 and 310→27 

switches were identified. The former switch is a relatively simple and energetically accessible 

process that involves the molecule ‘rolling’ on the surface and then transforming piecewise from 

an α-helix to a 310-helix. The 310→27 switch is more complex, involving a number of small 

changes and intermediates, with high energy barriers and low rate constants. As a consequence, 

while the α→310 switch occurs rapidly enough that it may easily be observed using molecular 
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dynamics simulation, the 310→27 switch will normally be beyond current molecular dynamics 

simulation capabilities. The information gleaned about the 310→27 transition demonstrates the 

possibilities inherent in this form of study, which could well be applied to other cases of 

biomolecule adsorption that occur over long periods of time. 

This study largely focused on the PES; entropic effects were only included when calculating 

rate constants, and these only took into consideration the most favored path in one direction. The 

disconnectivity graphs of the PES obtained here suggest that entropy may have some influence at 

least quantitatively; we are, therefore, working on including entropic contributions more fully,66-

67 which we will report on in the future. We will also investigate the variation of complexity and 

computational effort as a function of the peptide size and other peptide characteristics. Finally, as 

it is anticipated that a solvent will affect the switching behavior explored here,35 incorporation of 

solvent in DPS analysis is of interest. Unfortunately, this is a major challenge at present,62 and 

will need to await further methodological developments. 

SUPPORTING INFORMATION 

S1: Discrete path sampling procedure. S2: Algorithms and schemes used. S3: Development of 

preferred paths. S4: Additional disconnectivity graphs. S5: Additional transition paths. This 

material is available free of charge via the Internet at http://pubs.acs.org. 
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