4,872 research outputs found

    Band Symmetries and Singularities in Twisted Multilayer Graphene

    Get PDF
    The electronic spectra of rotationally faulted graphene bilayers are calculated using a continuum formulation for small fault angles that identifies two distinct electronic states of the coupled system. The low energy spectra of one state features a Fermi velocity reduction which ultimately leads to pairwise annihilation and regeneration of its low energy Dirac nodes. The physics in the complementary state is controlled by pseudospin selection rules that prevent a Fermi velocity renormalization and produce second generation symmetry-protected Dirac singularities in the spectrum. These results are compared with previous theoretical analyses and with experimental data.Comment: 5 pages, 3 figure

    On the Chinese Exchange Rate Regime: an Attempt to Flexibility during 2015

    Get PDF
    This study will demonstrate, through an econometric and asset allocation approach, if and how the Chinese exchange rate regime was changing during 2015. Particularly, China to improve its exchange rate formation system implemented, during July and August 2015, three depreciation as a step toward a market-oriented exchange rate. This situation, along with the new right of the RMB to be an international currency in SDR should generate a loss of weight about the USD in the Chinese basket peg. For this reason, moving from Frankel-Wei’s basic econometric model - but with some appropriate changes - our objective is to verify if the Chinese monetary policy about the exchange rate has affected the inner balance of the Chinese basket-peg leading it towards a flexible exchange rate regime

    A note on the Hamiltonian as a polymerisation parameter

    Full text link
    In effective models of loop quantum gravity, the onset of quantum effects is controlled by a so-called polymerisation scale. It is sometimes necessary to make this scale phase space dependent in order to obtain sensible physics. A particularly interesting choice recently used to study quantum corrected black hole spacetimes takes the generator of time translations itself to set the scale. We review this idea, point out errors in recent treatments, and show how to fix them in principle.Comment: 7 pages, 2 figures; v2: journal version, minor clarification

    Effective Quantum Extended Spacetime of Polymer Schwarzschild Black Hole

    Full text link
    The physical interpretation and eventual fate of gravitational singularities in a theory surpassing classical general relativity are puzzling questions that have generated a great deal of interest among various quantum gravity approaches. In the context of loop quantum gravity (LQG), one of the major candidates for a non-perturbative background-independent quantisation of general relativity, considerable effort has been devoted to construct effective models in which these questions can be studied. In these models, classical singularities are replaced by a "bounce" induced by quantum geometry corrections. Undesirable features may arise however depending on the details of the model. In this paper, we focus on Schwarzschild black holes and propose a new effective quantum theory based on polymerisation of new canonical phase space variables inspired by those successful in loop quantum cosmology. The quantum corrected spacetime resulting from the solutions of the effective dynamics is characterised by infinitely many pairs of trapped and anti-trapped regions connected via a space-like transition surface replacing the central singularity. Quantum effects become relevant at a unique mass independent curvature scale, while they become negligible in the low curvature region near the horizon. The effective quantum metric describes also the exterior regions and asymptotically classical Schwarzschild geometry is recovered. We however find that physically acceptable solutions require us to select a certain subset of initial conditions, corresponding to a specific mass (de-)amplification after the bounce. We also sketch the corresponding quantum theory and explicitly compute the kernel of the Hamiltonian constraint operator.Comment: 50 pages, 10 figures; v2: journal version, minor comment and references added; v3: minor corrections in section 5.3 to match journal versio

    Fisher Metric, Geometric Entanglement and Spin Networks

    Get PDF
    Starting from recent results on the geometric formulation of quantum mechanics, we propose a new information geometric characterization of entanglement for spin network states in the context of quantum gravity. For the simple case of a single-link fixed graph (Wilson line), we detail the construction of a Riemannian Fisher metric tensor and a symplectic structure on the graph Hilbert space, showing how these encode the whole information about separability and entanglement. In particular, the Fisher metric defines an entanglement monotone which provides a notion of distance among states in the Hilbert space. In the maximally entangled gauge-invariant case, the entanglement monotone is proportional to a power of the area of the surface dual to the link thus supporting a connection between entanglement and the (simplicial) geometric properties of spin network states. We further extend such analysis to the study of non-local correlations between two non-adjacent regions of a generic spin network graph characterized by the bipartite unfolding of an Intertwiner state. Our analysis confirms the interpretation of spin network bonds as a result of entanglement and to regard the same spin network graph as an information graph, whose connectivity encodes, both at the local and non-local level, the quantum correlations among its parts. This gives a further connection between entanglement and geometry.Comment: 29 pages, 3 figures, revised version accepted for publicatio
    • …
    corecore