34 research outputs found

    Examining the Relationship Between Black Carbon and Soot in Flames and Engine Exhaust

    No full text
    <div><p>This article investigates the black carbon (BC) content of soot formed in premixed and diffusion flames and emitted by light duty gasoline and diesel vehicles. BC is measured photoacoustically and compared with particulate mass collected by filter and calculated from particle size distributions. The BC fraction of soot from rich premixed ethylene flames increases with height above the burner, but can remain well below unity in modestly sooting flames. The BC fraction produced by a propane diffusion flame soot generator (combustion aerosol standard, CAST) falls as the fuel is diluted with nitrogen, the principal means used to adjust the desired particle size. Thermally treating the soot to remove possible condensed semivolatile species does little to change these trends. Transmission electron microscopy (TEM) images show that despite low BC content, these particles display the characteristic fractal-like agglomerate morphology of soot. Particle mass spectra reveal polycyclic aromatic hydrocarbon (PAH) and fullerene fragments associated with low BC soot, which disappear as the BC fraction approaches unity. The results suggest that low BC content reflects immature solid soot that has not carbonized. Particulate matter (PM) measurements from current technology diesel and gasoline vehicles exhibit a high, >80% BC fraction. This is attributed to effective soot carbonization during the expansion and exhaust strokes of the engine, and to the substantial reductions of condensable hydrocarbons by catalytic aftertreatment. These results are discussed with respect to using light absorption-based instruments to monitor engine exhaust PM and using flame-generated soot for PM instrument calibration.</p></div

    The CH 3

    No full text

    Kinetics of the Reaction between Acetylperoxy and Ethylperoxy Radicals

    No full text

    Evaluation of metallic filter media for sub-micrometer soot particle removal at elevated temperature

    No full text
    <p>Soot particle removal performance of two types of metallic filter media, sintered metal powder and sintered metal fiber, is experimentally evaluated as potential improvements to conventional ceramic filtration media for gasoline direct injection (GDI) engine PM after-treatment application. Soot collection efficiency and flow resistance of several grades of metallic media are measured at temperatures of 25, 350, and 650°C and a range of representative filtration velocities for sub-micrometer soot particles generated from a propane flame. Theoretical collection efficiency based on single fiber efficiency theory shows good agreement with experimental data for nearly spherical KCl particles at 350°C. Improved collection efficiency is observed for soot particles in the interception-dominated size range above ∼100 nm due to enhanced interception length. Soot collection is slightly enhanced at higher temperature, which is consistent with model predictions. Sintered metal fiber media are found capable of removing ∼75% of soot particles by mass with an incremental flow resistance of less than 1.5 kPa under 10 cm/s and 350°C, which is promising for gasoline particulate filter (GPF) application. The media level figure of merit (FOM) is used to quantify the soot collection efficiency versus flow resistance tradeoff of all media tested. It is found that due to their more open structure (higher porosity) sintered metal fiber media have FOMs nearly one order of magnitude higher than those of sintered metal powder media, and by analogy those of conventional wall flow ceramic media. This suggests that sintered metal fiber media represents an attractive alternative to ceramic media for designing GPFs; however, further research into creating comparable surface area to the honeycomb structures used for wall flow filters is needed to extract the full potential of metal fiber media.</p> <p>Copyright © 2017 American Association for Aerosol Research</p

    The Effects of Water Vapor on the CH 3

    No full text
    corecore