6,382 research outputs found

    Evolution of Star Clusters near the Galactic Center: Fully Self-consistent N-body Simulations

    Full text link
    We have performed fully self-consistent NN-body simulations of star clusters near the Galactic center (GC). Such simulations have not been performed because it is difficult to perform fast and accurate simulations of such systems using conventional methods. We used the Bridge code, which integrates the parent galaxy using the tree algorithm and the star cluster using the fourth-order Hermite scheme with individual timestep. The interaction between the parent galaxy and the star cluster is calculate with the tree algorithm. Therefore, the Bridge code can handle both the orbital and internal evolutions of star clusters correctly at the same time. We investigated the evolution of star clusters using the Bridge code and compared the results with previous studies. We found that 1) the inspiral timescale of the star clusters is shorter than that obtained with "traditional" simulations, in which the orbital evolution of star clusters is calculated analytically using the dynamical friction formula and 2) the core collapse of the star cluster increases the core density and help the cluster survive. The initial conditions of star clusters is not so severe as previously suggested.Comment: 19 pages, 19 figures, accepted for publication in Ap

    Evolution of Massive Black Hole Binaries

    Full text link
    We present the result of large-scale N-body simulations of the stellar-dynamical evolution of a massive black-hole binary at the center of a spherical galaxy. We focus on the dependence of the hardening rate on the relaxation timescale of the parent galaxy. A simple theoretical argument predicts that a binary black hole creates the ``loss cone'' around it. Once the loss cone is formed, the hardening rate is determined by the rate at which field stars diffuse into the loss cone. Therefore the hardening timescale becomes proportional to the relaxation timescale. Recent N-body simulations, however, have failed to confirm this theory and various explanations have been proposed. By performing simulations with sufficiently large N (up to 10610^6) for sufficiently long time, we found that the hardening rate does depend on N. Our result is consistent with the simple theoretical prediction that the hardening timescale is proportional to the relaxation timescale. This dependence implies that most massive black hole binaries are unlikely to merge within the Hubble time through interaction with field stars and gravitational wave radiation alone.Comment: Reviced version accepted for publication in ApJ. Scheduled to appear in the February 10, 2004 issu

    Massive Black Holes in Star Clusters. I. Equal-mass clusters

    Get PDF
    In this paper we report results of collisional N-body simulations of the dynamical evolution of equal-mass star clusters containing a massive central black hole. Each cluster is composed of between 5,000 to 180,000 stars together with a central black hole which contains between 0.2% to 10% of the total cluster mass. We find that for large enough black hole masses, the central density follows a power-law distribution with slope \rho \sim r^{-1.75} inside the radius of influence of the black hole, in agreement with predictions from earlier Fokker Planck and Monte Carlo models. The tidal disruption rate of stars is within a factor of two of that derived in previous studies. It seems impossible to grow an intermediate-mass black hole (IMBH) from a M \le 100 Msun progenitor in a globular cluster by the tidal disruption of stars, although M = 10^3 Msun IMBHs can double their mass within a Hubble time in dense globular clusters. The same is true for the supermassive black hole at the centre of the Milky Way. Black holes in star clusters will feed mainly on stars tightly bound to them and the re-population of these stars causes the clusters to expand, reversing core-collapse without the need for dynamically active binaries. Close encounters of stars in the central cusp also lead to an increased mass loss rate in the form of high-velocity stars escaping from the cluster. A companion paper will extend these results to the multi-mass case.Comment: 15 pages, 8 figures, ApJ in pres

    BRIDGE: A Direct-tree Hybrid N-body Algorithm for Fully Self-consistent Simulations of Star Clusters and their Parent Galaxies

    Full text link
    We developed a new direct-tree hybrid N-body algorithm for fully self-consistent N-body simulations of star clusters in their parent galaxies. In such simulations, star clusters need high accuracy, while galaxies need a fast scheme because of the large number of the particles required to model it. In our new algorithm, the internal motion of the star cluster is calculated accurately using the direct Hermite scheme with individual timesteps and all other motions are calculated using the tree code with second-order leapfrog integrator. The direct and tree schemes are combined using an extension of the mixed variable symplectic (MVS) scheme. Thus, the Hamiltonian corresponding to everything other than the internal motion of the star cluster is integrated with the leapfrog, which is symplectic. Using this algorithm, we performed fully self-consistent N-body simulations of star clusters in their parent galaxy. The internal and orbital evolutions of the star cluster agreed well with those obtained using the direct scheme. We also performed fully self-consistent N-body simulation for large-N models (N=2Ă—106N=2\times 10^6). In this case, the calculation speed was seven times faster than what would be if the direct scheme was used.Comment: 12 pages, 13 figures, Accepted for PAS

    Analysis on reflection spectra in strained ZnO thin films

    Full text link
    Thin films of laser molecular-beam epitaxy grown ZnO films were studied with respect to their optical properties. 4-K reflectivity was used to analyze various samples grown at different biaxial in-plane strain. The spectra show two structures at 3.37 eV corresponding to the A-free exciton transition and at 3.38 eV corresponding to the B-free exciton transition. Theoretical reflectivity spectra were calculated using the spatial dispersion model. Thus, the transverse energies, the longitudinal transversal splitting (ELT,), the oscillator strengths, and the damping parameters were determined for both the A- and B-free excitons of ZnO. As a rough trend, the strain dependence of the energy E_LT for the A-excitons is characterized by a negatively-peaking behavior with a minimum around the zero strain, while ELT for the B-excitons is an increasing function of the strain field values.Comment: 4 pages, 2 figures, 1 table, conference: ICMAT2005 (Singapore), to appear in an issue of J. Cryst. Growt

    Head-related Impulse Response Cues for Spatial Auditory Brain-computer Interface

    Full text link
    This study provides a comprehensive test of a head-related impulse response (HRIR) cues for a spatial auditory brain-computer interface (saBCI) speller paradigm. We present a comparison with the conventional virtual sound headphone-based spatial auditory modality. We propose and optimize the three types of sound spatialization settings using a variable elevation in order to evaluate the HRIR efficacy for the saBCI. Three experienced and seven naive BCI users participated in the three experimental setups based on ten presented Japanese syllables. The obtained EEG auditory evoked potentials (AEP) resulted with encouragingly good and stable P300 responses in online BCI experiments. Our case study indicated that users could perceive elevation in the saBCI experiments generated using the HRIR measured from a general head model. The saBCI accuracy and information transfer rate (ITR) scores have been improved comparing to the classical horizontal plane-based virtual spatial sound reproduction modality, as far as the healthy users in the current pilot study are concerned.Comment: 4 pages, 4 figures, accepted for EMBC 2015, IEEE copyrigh

    Gravitational Lensing in Clusters of Galaxies

    Get PDF
    Gravitational lensing in clusters of galaxies is an efficient tool to probe the mass distribution of galaxies and clusters, high redshift objects thanks to the gravitational amplification, and the geometry of the universe. We review some important aspects of cluster lensing and related issues in observational cosmology.Comment: invited review of the journal: Progress of Theoretical Physics (in press) 51 pages - 33 figure

    Chromatic and High-frequency cVEP-based BCI Paradigm

    Full text link
    We present results of an approach to a code-modulated visual evoked potential (cVEP) based brain-computer interface (BCI) paradigm using four high-frequency flashing stimuli. To generate higher frequency stimulation compared to the state-of-the-art cVEP-based BCIs, we propose to use the light-emitting diodes (LEDs) driven from a small micro-controller board hardware generator designed by our team. The high-frequency and green-blue chromatic flashing stimuli are used in the study in order to minimize a danger of a photosensitive epilepsy (PSE). We compare the the green-blue chromatic cVEP-based BCI accuracies with the conventional white-black flicker based interface.Comment: 4 pages, 4 figures, accepted for EMBC 2015, IEEE copyrigh
    • …
    corecore