320 research outputs found

    Gap deformation and classical wave localization in disordered two-dimensional photonic band gap materials

    Full text link
    By using two ab initio numerical methods we study the effects that disorder has on the spectral gaps and on wave localization in two-dimensional photonic band gap materials. We find that there are basically two different responses depending on the lattice realization (solid dielectric cylinders in air or vise versa), the wave polarization, and the particular form under which disorder is introduced. Two different pictures for the photonic states are employed, the ``nearly free'' photon and the ``strongly localized'' photon. These originate from the two different mechanisms responsible for the formation of the spectral gaps, ie. multiple scattering and single scatterer resonances, and they qualitatively explain our results.Comment: Accepted for publication in Phys. Rev.

    Journal of Nanoscience with Advanced Technology Hydrogen storage in Lithium, Sodium, and Potassium nanoparticles

    Get PDF
    Abstract Using Density Functional Theory (DFT), the desorption energies of Hydrogen in Lithium, Sodium, and Potassium nanoparticles is calculated. The type of nanoparticles studied were M n H xn with M=Li, Na, K and n varying from 2 up to 30. For each nanoparticle, several different geometries were studied in order to find the one with the lowest energy. The results were compared with similar calculated results for Beryllium and Magnesium nanoparticles. Mixed Li n-x Na x H n nanoparticles were also studied

    Robustness of One-Dimensional Photonic Bandgaps Under Random Variations of Geometrical Parameters

    Get PDF
    The supercell method is used to study the variation of the photonic bandgaps in one-dimensional photonic crystals under random perturbations to thicknesses of the layers. The results of both plane wave and analytical band structure and density of states calculations are presented along with the transmission cofficient as the level of randomness and the supercell size is increased. It is found that higher bandgaps disappear first as the randomness is gradually increased. The lowest bandgap is found to persist up to a randomness level of 55 percent.Comment: Submitted to Physical Review B on April 8 200

    Nonlocal electrodynamics of two-dimensional wire mesh photonic crystals

    Full text link
    We calculate analytically the spectra of plasma waves and electromagnetic waves (EMW) in metallic photonic crystal consisting of the parallel thin infinite metallic cylinders embedded in the dielectric media. The axes of metallic cylinders form a regular square lattice in a plane perpendicular to them. The metal inside the cylinders is assumed to be in the high frequency regime ωτ>>1\omega \tau >> 1, where τ\tau is the relaxation time. The proposed analytical theory is based upon small parameters f<<1f << 1, where ff is the volume fraction of the metal, and kR<<1kR << 1, where kk is the wave vector and RR is the radius of the cylinder. It is shown that there are five different branches of the EMW that cover all frequency range under consideration except one very small omnidirectional gap in the vicinity of the frequency of the surface plasmon. However, at some directions of propagation and polarizations the gap may be much larger. The reflection and refraction of the EMW is also considered. The general theory of refraction is proposed which is complicated by the spatial dispersion of the dielectric constant, and one particular geometry of the incident EMW is considered.Comment: 14 pages, 8 figure

    Viscoelastic response of sonic band-gap materials

    Full text link
    A brief report is presented on the effect of viscoelastic losses in a high density contrast sonic band-gap material of close-packed rubber spheres in air. The scattering properties of such a material are computed with an on-shell multiple scattering method, properties which are compared with the lossless case. The existence of an appreciable omnidirectional gap in the transmission spectrum, when losses are present, is also reported.Comment: 5 pages, 4 figures, submitted to PR

    Exceptionally directional sources with photonic-bandgap crystals

    Get PDF
    Cataloged from PDF version of article.Three-dimensional photonic-bandgap crystals are used to design and fabricate uniquely directional sources and receivers. By utilizing the resonances of a Fabry-Perot cavity formed with photonic-bandgap crystals, we were able to create exceptionally directional sources by placing the sources within such a cavity. Very good agreement between finite-difference time-domain calculations and the experiment is obtained. Radiation patterns with half-power beam widths of less than 12 degrees were obtained. (C) 2001 Optical Society of America
    corecore