95 research outputs found

    Molecular complexity determines the number of olfactory notes and the pleasantness of smells

    Get PDF
    One major unresolved problem in olfaction research is to relate the percept to the molecular structure of stimuli. The present study examined this issue and showed for the first time a quantitative structure-odor relationship in which the more structurally complex a monomolecular odorant, the more numerous the olfactory notes it evokes. Low-complexity odorants were also rated as more aversive, reflecting the fact that low molecular complexity may serve as a warning cue for the olfactory system. Taken together, these findings suggest that molecular complexity provides a framework to explain the subjective experience of smells

    The location of olfactory receptors within olfactory epithelium is independent of odorant volatility and solubility

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our objective was to study the pattern of olfactory receptor expression within the dorsal and ventral regions of the mouse olfactory epithelium. We hypothesized that olfactory receptors were distributed based on the chemical properties of their ligands: e.g. receptors for polar, hydrophilic and weakly volatile odorants would be present in the dorsal region of olfactory epithelium; while receptors for non-polar, more volatile odorants would be distributed to the ventral region. To test our hypothesis, we used micro-transplantation of cilia-enriched plasma membranes derived from dorsal or ventral regions of the olfactory epithelium into Xenopus oocytes for electrophysiological characterization against a panel of 100 odorants.</p> <p>Findings</p> <p>Odorants detected by ORs from the dorsal and ventral regions showed overlap in volatility and water solubility. We did not find evidence for a correlation between the solubility and volatility of odorants and the functional expression of olfactory receptors in the dorsal or ventral region of the olfactory epithelia.</p> <p>Conclusions</p> <p>No simple clustering or relationship between chemical properties of odorants could be associated with the different regions of the olfactory epithelium. These results suggest that the location of ORs within the epithelium is not organized based on the physico-chemical properties of their ligands.</p

    Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels

    Get PDF
    BACKGROUND: The acid sensitive ion channels TRPV1 (transient receptor potential vanilloid receptor-1) and ASIC3 (acid sensing ion channel-3) respond to tissue acidification in the range that occurs during painful conditions such as inflammation and ischemia. Here, we investigated to which extent they are expressed by rat dorsal root ganglion neurons projecting to lung and pleura, respectively. METHODS: The tracer DiI was either injected into the left lung or applied to the costal pleura. Retrogradely labelled dorsal root ganglion neurons were subjected to triple-labelling immunohistochemistry using antisera against TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons), and their soma diameter was measured. RESULTS: Whereas 22% of pulmonary spinal afferents contained neither channel-immunoreactivity, at least one is expressed by 97% of pleural afferents. TRPV1(+)/ASIC3(- )neurons with probably slow conduction velocity (small soma, neurofilament 68-negative) were significantly more frequent among pleural (35%) than pulmonary afferents (20%). TRPV1(+)/ASIC3(+ )neurons amounted to 14 and 10% respectively. TRPV1(-)/ASIC3(+ )neurons made up between 44% (lung) and 48% (pleura) of neurons, and half of them presumably conducted in the A-fibre range (larger soma, neurofilament 68-positive). CONCLUSION: Rat pleural and pulmonary spinal afferents express at least two different acid-sensitive channels that make them suitable to monitor tissue acidification. Patterns of co-expression and structural markers define neuronal subgroups that can be inferred to subserve different functions and may initiate specific reflex responses. The higher prevalence of TRPV1(+)/ASIC3(- )neurons among pleural afferents probably reflects the high sensitivity of the parietal pleura to painful stimuli

    Parallel Odor Processing by Two Anatomically Distinct Olfactory Bulb Target Structures

    Get PDF
    The olfactory cortex encompasses several anatomically distinct regions each hypothesized to provide differential representation and processing of specific odors. Studies exploring whether or not the diversity of olfactory bulb input to olfactory cortices has functional meaning, however, are lacking. Here we tested whether two anatomically major olfactory cortical structures, the olfactory tubercle (OT) and piriform cortex (PCX), differ in their neural representation and processing dynamics of a small set of diverse odors by performing in vivo extracellular recordings from the OT and PCX of anesthetized mice. We found a wealth of similarities between structures, including odor-evoked response magnitudes, breadth of odor tuning, and odor-evoked firing latencies. In contrast, only few differences between structures were found, including spontaneous activity rates and odor signal-to-noise ratios. These results suggest that despite major anatomical differences in innervation by olfactory bulb mitral/tufted cells, the basic features of odor representation and processing, at least within this limited odor set, are similar within the OT and PCX. We predict that the olfactory code follows a distributed processing stream in transmitting behaviorally and perceptually-relevant information from low-level stations

    Quantitative stimulation of frog olfactory receptors.

    No full text

    A Method for Generating Natural and User-Defined Sniffing Patterns in Anesthetized or Reduced Preparations

    No full text
    Sniffing has long been thought to play a critical role in shaping neural responses to odorants at multiple levels of the nervous system. However, it has been difficult to systematically examine how particular parameters of sniffing behavior shape odorant-evoked activity, in large part because of the complexity of sniffing behavior and the difficulty in reproducing this behavior in an anesthetized or reduced preparation. Here we present a method for generating naturalistic sniffing patterns in such preparations. The method involves a nasal ventilator whose movement is controlled by an analog command voltage. The command signal may consist of intranasal pressure transients recorded from awake rats and mice or user-defined waveforms. This β€œsniff playback” device generates intranasal pressure and airflow transients in anesthetized animals that approximate those recorded from the awake animal and are reproducible across trials and across preparations. The device accurately reproduces command waveforms over an amplitude range of approximately 1 log unit and up to frequencies of approximately 12 Hz. Further, odorant-evoked neural activity imaged during sniff playback appears similar to that seen in awake animals. This method should prove useful in investigating how the parameters of odorant sampling shape neural responses in a variety of experimental settings

    Visual Acuity under Vibration

    No full text
    • …
    corecore