13 research outputs found
Ferromagnetic resonance force microscopy on microscopic cobalt single layer films
We report mechanical detection of ferromagnetic resonance signals from
microscopic Co single layer thin films using a magnetic resonance force
microscope (MRFM). Variations in the magnetic anisotropy field and the
inhomogeneity of were clearly observed in the FMR spectra of microscopic Co
thin films 500 and 1000 angstrom thick and 40 X 200 micron^2 in lateral extent.
This demonstrates the important potential that MRFM detection of FMR holds for
microscopic characterization of spatial distribution of magnetic properties in
magnetic layered materials and devices.Comment: 4 pages, 2 figures, RevTex. To be published in Applied Physics
Letters, October 5, 199
Ferromagnetic resonance imaging of Co films using magnetic resonance force microscopy
Lateral one-dimensional imaging of cobalt (Co) films by means of microscopic ferromagnetic resonance (FMR) detected using the magnetic resonance force microscope (MRFM) is demonstrated. A novel approach involving scanning a localized magnetic probe is shown to enable FMR imaging in spite of the broad resonance linewidth. We introduce a spatially selective local field by means of a small, magnetically polarized spherical crystallite of yttrium iron garnet (YIG). Using MRFM-detected FMR signals from a sample consisting of two Co films, we can resolve the âŒ20 ÎŒm lateral separation between the films. The results can be qualitatively understood by consideration of the calculated spatial profiles of the magnetic field generated by the YIG sphere
The magnetic-resonance force microscope: a new tool for high-resolution, 3-D, subsurface scanned probe imaging
The magnetic-resonance force microscope (MRFM) is a novel scanned probe instrument which combines the three-dimensional (3-D) imaging capabilities of magnetic-resonance imaging with the high sensitivity and resolution of atomic-force microscopy. It will enable nondestructive, chemical-specific, high-resolution microscopic studies and imaging of subsurface properties of a broad range of materials. The MRFM has demonstrated its utility for study of microscopic ferromagnets, and it will enable microscopic understanding of the nonequilibrium spin polarization resulting from spin injection. Microscopic MRFM studies will provide unprecedented insight into the physics of magnetic and spin-based materials. We will describe the principles and the state-of-the-art in magnetic-resonance force microscopy, discuss existing cryogenic MRFM instruments incorporating high-Q, single-crystal microresonators with integral submicrometer probe magnets, and indicate future directions for enhancing MRFM instrument capabilities
Imaging the dephasing of spin wave modes in a square thin film magnetic element
Copyright © 2004 The American Physical SocietyWe have used time-resolved scanning Kerr effect microscopy to study dephasing of spin wave modes in a square Ni81Fe19 element of 10 Όm width and 150 nm thickness. When a static magnetic field H was applied parallel to an edge of the square, demagnetized regions appeared at the edges orthogonal to the field. When H was applied along a diagonal, a demagnetized region appeared along the opposite diagonal. Time-resolved images of the out-of-plane magnetization component showed stripes that lie perpendicular to H and indicate the presence of spin wave modes with wave vector parallel to the static magnetization. The transient Kerr rotation was measured at different positions along an axis parallel to H, and the power spectra revealed a number of different modes. Micromagnetic simulations reproduce both the observed images and the mode frequencies. This study allows us to understand an anisotropic damping observed at the center of the square element in terms of dephasing of the resonant mode spectrum
Recommended from our members
The magnetic resonance force microscope: A new microscopic probe of magnetic materials
The magnetic resonance force microscope (MRFM) marries the techniques of magnetic resonance imaging (MRI) and atomic force microscopy (AFM), to produce a three-dimensional imaging instrument with high, potentially atomic-scale, resolution. The principle of the MRFM has been successfully demonstrated in numerous experiments. By virtue of its unique capabilities the MRFM shows promise to make important contributions in fields ranging from three-dimensional materials characterization to bio-molecular structure determination. Here the authors focus on its application to the characterization and study of layered magnetic materials; the ability to illuminate the properties of buried interfaces in such materials is a particularly important goal. While sensitivity and spatial resolution are currently still far from their theoretical limits, they are nonetheless comparable to or superior to that achievable in conventional MRI. Further improvement of the MRFM will involve operation at lower temperature, application of larger field gradients, introduction of advanced mechanical resonators and improved reduction of the spurious coupling when the magnet is on the resonator
The Magnetic Resonance Force Microscope: A New Microscopic Probe of Magnetic Materials
The magnetic resonance force microscope (MRFM) marries the techniques of magnetic resonance imaging (MRI) and atomic force microscopy (AFM), to produce a three-dimensional imaging instrument with high, potentially atomic-scale, resolution. The principle of the MRFM has been successfully demonstrated in numerous experiments. By virtue of its unique capabilities, the MRFM shows promise to make important contributions in fields ranging from three-dimensional materials characterization to bio-molecular structure determination. Here we focus on its application to the characterization and study of layered magnetic materials; the ability to illuminate the properties of buried interfaces in such materials is a particularly important goal. While sensitivity and spatial resolution are currently still far from their theoretical limits, they are nonetheless comparable to or superior to that achievable in conventional MRI. Further improvement of the MRFM will involve operation at lower temperature, application of larger field gradients, introduction of advanced mechanical resonators and improved reduction of the spurious coupling when the magnet is on the resonator
Recommended from our members
Magnetic Resonance Force Microscope Development
Our objectives were to develop the Magnetic Resonance Force Microscope (MRFM) into an instrument capable of scientific studies of buried structures in technologically and scientifically important electronic materials such as magnetic multilayer materials. This work resulted in the successful demonstration of MRFM-detected ferromagnetic resonance (FMR) as a microscopic characterization tool for thin magnetic films. Strong FMR spectra obtained from microscopic Co thin films (500 and 1000 angstroms thick and 40 x 200 microns in lateral extent) allowed us to observe variations in sample inhomogeneity and magnetic anisotropy field. We demonstrated lateral imaging in microscopic FMR for the first time using a novel approach employing a spatially selective local field generated by a small magnetically polarized spherical crystallite of yttrium iron garnet. These successful applications of the MRFM in materials studies provided the basis for our successful proposal to DOE/BES to employ the MRF M in studies of buried interfaces in magnetic materials
Recommended from our members
Beyond metric gravity: Progress on PS-200
The reconciliation of quantum mechanics and gravity on varying distance scales requires changes to General Relativity that may be testable implications. We briefly review the status of tests with matter of the inverse square law and the principle of equivalence, then report on progress on the drift-tube measurement section of PS- 200, the experiment to measure the gravitational acceleration of antiprotons