5,496 research outputs found
Prompt Gamma Activation Analysis (PGAA): Technique of choice for nondestructive bulk analysis of returned comet samples
Prompt gamma activation analysis (PGAA) is a well-developed analytical technique. The technique involves irradiation of samples in an external neutron beam from a nuclear reactor, with simultaneous counting of gamma rays produced in the sample by neutron capture. Capture of neutrons leads to excited nuclei which decay immediately with the emission of energetic gamma rays to the ground state. PGAA has several advantages over other techniques for the analysis of cometary materials: (1) It is nondestructive; (2) It can be used to determine abundances of a wide variety of elements, including most major and minor elements (Na, Mg, Al, Si, P, K, Ca, Ti, Cr, Mn, Fe, Co, Ni), volatiles (H, C, N, F, Cl, S), and some trace elements (those with high neutron capture cross sections, including B, Cd, Nd, Sm, and Gd); and (3) It is a true bulk analysis technique. Recent developments should improve the technique's sensitivity and accuracy considerably
Relationships among basaltic lunar meteorites
During the past two years four meteorites of dominantly mare basalt composition were identified in the Japanese and US Antarctic collections. Basalts represent a much higher proportion of the lunar meteorites than is expected from photogeologic mapping of mare and highland regions. Also, the basaltic lunar meteorites are all described as VLT mare basalt, which is a relatively uncommon type among returned lunar samples. The significance of the basaltic meteorites to the understanding of the lunar crust depends on the evaluation of possible relationships among the individual meteorites. None of the specimens are paired meteorites. They differ from each other in petrography and composition. It is important to determine whether they might be paired ejecta which were ejected from the same mare region by the same impact. The question of paired ejecta must be addressed using a combination of exposure histories and petrographic/compositional characteristics. It is possible that the basaltic lunar meteorites are paired ejecta from the same region of the Moon. However, the relationships among them are more complicated than the basaltic breccias being simply brecciated mare gabbros
Guide to the US collection of antarctic meteorites 1976-1988 (everything you wanted to know about the meteorite collection). Antarctic Meteorite Newsletter, Volume 13, Number 1
The state of the collection of Antarctic Meteorites is summarized. This guide is intended to assist investigators plan their meteorite research and select and request samples. Useful information is presented for all classified meteorites from 1976 to 1988 collections, as of Sept. 1989. The meteorite collection has grown over 13 years to include 4264 samples of which 2754 have been classified. Most of the unclassified meteorites are ordinary chondrites because the collections have been culled for specimens of special petrologic type. The guide consists of two large classification tables. They are preceded by a list of sample locations and important notes to make the tables understandable
Noncommutative Solitons: Moduli Spaces, Quantization, Finite Theta Effects and Stability
We find the N-soliton solution at infinite theta, as well as the metric on
the moduli space corresponding to spatial displacements of the solitons. We use
a perturbative expansion to incorporate the leading 1/theta corrections, and
find an effective short range attraction between solitons. We study the
stability of various solutions. We discuss the finite theta corrections to
scattering, and find metastable orbits. Upon quantization of the two-soliton
moduli space, for any finite theta, we find an s-wave bound state.Comment: Second revision: Discussions of translation zero-modes in section 4
and scales in section 5 improved; web addresses of movies changed. First
revision: Section 6 is rewritten (thanks to M. Headrick for pointing out a
mistake in the original version); some references and acknowledgements added.
21 pages, JHEP style, Hypertex, 1 figure, 3 MPEG's at:
http://www.physto.se/~unge/traj1.mpg http://www.physto.se/~unge/traj2.mpg
http://www.physto.se/~unge/traj3.mp
“Not Being Able to Talk Was Horrid”: A Descriptive, Correlational Study of Communication During Mechanical Ventilation
Objectives: The purpose of this study was to describe the patient experience of communication during mechanical ventilation.
Research methodology: This descriptive study is a secondary analysis of data collected to study the relationship between sedation and the MV patients’ recall of the ICU. Interviews, conducted after extubation, included the Intensive Care Experience Questionnaire. Data were analysed with Spearman correlation coefficients (rs) and content analysis.
Setting: Participants were recruited from a medical-surgical intensive care unit in the Midwest United States.
Results: Participants (n = 31) with a mean age of 65 ± 11.9 were on the ventilator a median of 5 days. Inability to communicate needs was associated with helplessness (rs = .43). While perceived lack of information received was associated with not feeling in control (rs = 41) and helplessness (rs = 41). Ineffective communication impacted negatively on satisfaction with care. Participants expressed frustration with failed communication and a lack of information received. They believed receipt of information helped them cope and desired a better system of communication during mechanical ventilation.
Conclusion: Communication effectiveness impacts patients’ sense of safety and well-being during mechanical ventilation. Greater emphasis needs to be placed on the development and integration of communication strategies into critical care nursing practice
Magnetic field tuning of coplanar waveguide resonators
We describe measurements on microwave coplanar resonators designed for
quantum bit experiments. Resonators have been patterned onto sapphire and
silicon substrates, and quality factors in excess of a million have been
observed. The resonant frequency shows a high sensitivity to magnetic field
applied perpendicular to the plane of the film, with a quadratic dependence for
the fundamental, second and third harmonics. Frequency shift of hundreds of
linewidths can be obtained.Comment: Accepted for publication in AP
On the properties of superconducting planar resonators at mK temperatures
Planar superconducting resonators are now being increasingly used at mK
temperatures in a number of novel applications. They are also interesting
devices in their own right since they allow us to probe the properties of both
the superconductor and its environment. We have experimentally investigated
three types of niobium resonators - including a lumped element design -
fabricated on sapphire and SiO_2/Si substrates. They all exhibit a non-trivial
temperature dependence of their centre frequency and quality factor. Our
results shed new light on the interaction between the electromagnetic waves in
the resonator and two-level fluctuators in the substrate.Comment: V2 includes some minor corrections/changes. Submitted to PR
Study of thermal insulation for airborne liquid hydrogen fuel tanks
A concept for a fail-safe thermal protection system was developed. From screening tests, approximately 30 foams, adhesives, and reinforcing fibers using 0.3-meter square liquid nitrogen cold plate, CPR 452 and Stafoam AA1602, both reinforced with 10 percent by weight of 1/16 inch milled OCF Style 701 Fiberglas, were selected for further tests. Cyclic tests with these materials in 2-inch thicknesses bonded on a 0.6-meter square cold plate with Crest 7410 adhesive systems, were successful. Zero permeability gas barriers were identified and found to be compatible with the insulating concept
Spaceship Earth: A partnership in curriculum writing
As the Apollo astronauts left Earth to venture onto the surface of another planetary body, they saw their home planet in a new global perspective. Unmanned NASA missions have given us a closer look at all the other planets in our solar system and emphasized the uniqueness of Earth as the only place in our solar system that can sustain life as we know it. Spaceship Earth is a new science curriculum which was developed to help students and teachers to explore the Earth, to see it in the global perspective, and to understand the relationships among life, the planet, and the sun. Astronaut photographs, especially shuttle pictures, are used as groundbased studies to help students to understand global Earth Science and integrate various aspects of physical, life, and social science. The Spaceship Earth curriculum was developed at by a team of JSC scientists working in collaboration with teachers from local school districts. This project was done under the auspices of Partner-In-Space, a local non-profit organization dedicated to improving science education and our general knowledge of space. The team met once a month for a year then assembled the curriculum during the summer. The project is now in the testing stage as the teachers try it out in their classrooms. It was supported by the Texas Education Agency and will be offered by the State of Texas as a supplemental curriculum for statewide use. Because the curriculum was developed by teachers, it is self contained and the lessons are easy to implement and give students concrete experiences. The three sub-units follow in a logical order, but may be used independently. If they are used separately, they may be tied together by the teacher returning to the basic theme of the global Earth as each unit is completed
- …